Metamath Proof Explorer


Theorem cdleme36m

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 11-Mar-2013)

Ref Expression
Hypotheses cdleme36.b 𝐵 = ( Base ‘ 𝐾 )
cdleme36.l = ( le ‘ 𝐾 )
cdleme36.j = ( join ‘ 𝐾 )
cdleme36.m = ( meet ‘ 𝐾 )
cdleme36.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme36.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme36.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme36.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme36.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
cdleme36.f 𝐹 = ( ( 𝑅 𝑉 ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
cdleme36.c 𝐶 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) )
Assertion cdleme36m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑅 = 𝑆 )

Proof

Step Hyp Ref Expression
1 cdleme36.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme36.l = ( le ‘ 𝐾 )
3 cdleme36.j = ( join ‘ 𝐾 )
4 cdleme36.m = ( meet ‘ 𝐾 )
5 cdleme36.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme36.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme36.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme36.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdleme36.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
10 cdleme36.f 𝐹 = ( ( 𝑅 𝑉 ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
11 cdleme36.c 𝐶 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) )
12 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp3rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) )
14 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
15 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
16 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑄 )
17 simp3rr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑡 ( 𝑃 𝑄 ) )
18 2 3 4 5 6 7 8 cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → 𝐸𝐴 )
19 12 14 15 13 16 17 18 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝐸𝐴 )
20 2 3 4 5 6 7 8 cdleme3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → ¬ 𝐸 𝑊 )
21 12 14 15 13 16 17 20 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝐸 𝑊 )
22 19 21 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝐸𝐴 ∧ ¬ 𝐸 𝑊 ) )
23 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑄𝐴 )
24 23 16 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑄𝐴𝑃𝑄 ) )
25 2 3 4 5 6 7 8 cdleme3b ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴𝑃𝑄 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ) → 𝐸𝑡 )
26 12 14 24 13 25 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝐸𝑡 )
27 26 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑡𝐸 )
28 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
29 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
30 simp3l1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
31 simp3r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) )
32 1 2 3 4 5 6 7 8 cdleme36a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → ¬ 𝑅 ( 𝑡 𝐸 ) )
33 12 14 23 16 28 30 31 32 syl331anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑅 ( 𝑡 𝐸 ) )
34 simp3l2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
35 1 2 3 4 5 6 7 8 cdleme36a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑡 𝐸 ) )
36 12 14 23 16 29 34 31 35 syl331anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑆 ( 𝑡 𝐸 ) )
37 simp3l3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝐹 = 𝐶 )
38 2 3 4 5 6 9 10 11 cdleme35h ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ( 𝐸𝐴 ∧ ¬ 𝐸 𝑊 ) ) ∧ ( 𝑡𝐸 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ¬ 𝑅 ( 𝑡 𝐸 ) ∧ ¬ 𝑆 ( 𝑡 𝐸 ) ∧ 𝐹 = 𝐶 ) ) → 𝑅 = 𝑆 )
39 12 13 22 27 28 29 33 36 37 38 syl333anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐶 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑅 = 𝑆 )