Metamath Proof Explorer


Theorem cdleme37m

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 13-Mar-2013)

Ref Expression
Hypotheses cdleme37.l = ( le ‘ 𝐾 )
cdleme37.j = ( join ‘ 𝐾 )
cdleme37.m = ( meet ‘ 𝐾 )
cdleme37.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme37.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme37.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme37.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme37.d 𝐷 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
cdleme37.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
cdleme37.x 𝑋 = ( ( 𝑢 𝐷 ) 𝑊 )
cdleme37.c 𝐶 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) )
cdleme37.g 𝐺 = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
Assertion cdleme37m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐶 = 𝐺 )

Proof

Step Hyp Ref Expression
1 cdleme37.l = ( le ‘ 𝐾 )
2 cdleme37.j = ( join ‘ 𝐾 )
3 cdleme37.m = ( meet ‘ 𝐾 )
4 cdleme37.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme37.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme37.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme37.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
8 cdleme37.d 𝐷 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
9 cdleme37.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
10 cdleme37.x 𝑋 = ( ( 𝑢 𝐷 ) 𝑊 )
11 cdleme37.c 𝐶 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) )
12 cdleme37.g 𝐺 = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
13 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
14 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
15 simp32l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) )
16 simp33l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) )
17 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑄 )
18 simp32r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑡 ( 𝑃 𝑄 ) )
19 simp33r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑢 ( 𝑃 𝑄 ) )
20 simp31r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
21 18 19 20 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ¬ 𝑡 ( 𝑃 𝑄 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) )
22 eqid ( ( 𝑆 𝑡 ) 𝑊 ) = ( ( 𝑆 𝑡 ) 𝑊 )
23 eqid ( ( 𝑆 𝑢 ) 𝑊 ) = ( ( 𝑆 𝑢 ) 𝑊 )
24 eqid ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) )
25 eqid ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) )
26 1 2 3 4 5 6 7 8 22 23 24 25 cdleme21k ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( ¬ 𝑡 ( 𝑃 𝑄 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) ) )
27 13 14 15 16 17 21 26 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) ) )
28 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
29 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝐴 )
30 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑄𝐴 )
31 1 2 3 4 5 6 cdleme4 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑆 ( 𝑃 𝑄 ) ) → ( 𝑃 𝑄 ) = ( 𝑆 𝑈 ) )
32 28 29 30 14 20 31 syl131anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃 𝑄 ) = ( 𝑆 𝑈 ) )
33 1 2 3 4 5 6 7 cdleme2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ) → ( ( 𝑡 𝐸 ) 𝑊 ) = 𝑈 )
34 28 29 30 15 33 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑡 𝐸 ) 𝑊 ) = 𝑈 )
35 9 34 eqtrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑉 = 𝑈 )
36 35 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆 𝑉 ) = ( 𝑆 𝑈 ) )
37 32 36 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃 𝑄 ) = ( 𝑆 𝑉 ) )
38 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐾 ∈ HL )
39 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑆𝐴 )
40 15 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑡𝐴 )
41 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑡𝐴 ) → ( 𝑆 𝑡 ) = ( 𝑡 𝑆 ) )
42 38 39 40 41 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆 𝑡 ) = ( 𝑡 𝑆 ) )
43 42 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑆 𝑡 ) 𝑊 ) = ( ( 𝑡 𝑆 ) 𝑊 ) )
44 43 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) = ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) )
45 37 44 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) ) = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) )
46 11 45 eqtr4id ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐶 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑆 𝑡 ) 𝑊 ) ) ) )
47 1 2 3 4 5 6 8 cdleme2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴 ∧ ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ) ) → ( ( 𝑢 𝐷 ) 𝑊 ) = 𝑈 )
48 28 29 30 16 47 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑢 𝐷 ) 𝑊 ) = 𝑈 )
49 10 48 eqtrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑋 = 𝑈 )
50 49 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆 𝑋 ) = ( 𝑆 𝑈 ) )
51 32 50 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃 𝑄 ) = ( 𝑆 𝑋 ) )
52 16 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑢𝐴 )
53 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑆𝐴𝑢𝐴 ) → ( 𝑆 𝑢 ) = ( 𝑢 𝑆 ) )
54 38 39 52 53 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆 𝑢 ) = ( 𝑢 𝑆 ) )
55 54 oveq1d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑆 𝑢 ) 𝑊 ) = ( ( 𝑢 𝑆 ) 𝑊 ) )
56 55 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) = ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
57 51 56 oveq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) ) = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) ) )
58 12 57 eqtr4id ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑆 𝑢 ) 𝑊 ) ) ) )
59 27 46 58 3eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐶 = 𝐺 )