Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme37.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme37.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme37.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme37.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme37.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme37.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme37.e |
⊢ 𝐸 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme37.d |
⊢ 𝐷 = ( ( 𝑢 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑢 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme37.v |
⊢ 𝑉 = ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) |
10 |
|
cdleme37.x |
⊢ 𝑋 = ( ( 𝑢 ∨ 𝐷 ) ∧ 𝑊 ) |
11 |
|
cdleme37.c |
⊢ 𝐶 = ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
12 |
|
cdleme37.g |
⊢ 𝐺 = ( ( 𝑆 ∨ 𝑋 ) ∧ ( 𝐷 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
13 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
14 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
15 |
|
simp32l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) |
16 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ) |
17 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
18 |
|
simp32r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) |
19 |
|
simp33r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) |
20 |
|
simp31r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
21 |
18 19 20
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
22 |
|
eqid |
⊢ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) = ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) |
23 |
|
eqid |
⊢ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) = ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) |
24 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
25 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) |
26 |
1 2 3 4 5 6 7 8 22 23 24 25
|
cdleme21k |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) ) |
27 |
13 14 15 16 17 21 26
|
syl132anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) ) |
28 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
29 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
30 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
31 |
1 2 3 4 5 6
|
cdleme4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑆 ∨ 𝑈 ) ) |
32 |
28 29 30 14 20 31
|
syl131anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑆 ∨ 𝑈 ) ) |
33 |
1 2 3 4 5 6 7
|
cdleme2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ) → ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) = 𝑈 ) |
34 |
28 29 30 15 33
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) = 𝑈 ) |
35 |
9 34
|
eqtrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑉 = 𝑈 ) |
36 |
35
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑆 ∨ 𝑉 ) = ( 𝑆 ∨ 𝑈 ) ) |
37 |
32 36
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑆 ∨ 𝑉 ) ) |
38 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐾 ∈ HL ) |
39 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
40 |
15
|
simpld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑡 ∈ 𝐴 ) |
41 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑡 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑡 ) = ( 𝑡 ∨ 𝑆 ) ) |
42 |
38 39 40 41
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑆 ∨ 𝑡 ) = ( 𝑡 ∨ 𝑆 ) ) |
43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) = ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) |
44 |
43
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) = ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
45 |
37 44
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) ) = ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
46 |
11 45
|
eqtr4id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐶 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑆 ∨ 𝑡 ) ∧ 𝑊 ) ) ) ) |
47 |
1 2 3 4 5 6 8
|
cdleme2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ) ) → ( ( 𝑢 ∨ 𝐷 ) ∧ 𝑊 ) = 𝑈 ) |
48 |
28 29 30 16 47
|
syl13anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑢 ∨ 𝐷 ) ∧ 𝑊 ) = 𝑈 ) |
49 |
10 48
|
eqtrid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑋 = 𝑈 ) |
50 |
49
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑆 ∨ 𝑋 ) = ( 𝑆 ∨ 𝑈 ) ) |
51 |
32 50
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( 𝑆 ∨ 𝑋 ) ) |
52 |
16
|
simpld |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑢 ∈ 𝐴 ) |
53 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑆 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) → ( 𝑆 ∨ 𝑢 ) = ( 𝑢 ∨ 𝑆 ) ) |
54 |
38 39 52 53
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑆 ∨ 𝑢 ) = ( 𝑢 ∨ 𝑆 ) ) |
55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) = ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) |
56 |
55
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) = ( 𝐷 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
57 |
51 56
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) = ( ( 𝑆 ∨ 𝑋 ) ∧ ( 𝐷 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
58 |
12 57
|
eqtr4id |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) ) |
59 |
27 46 58
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐶 = 𝐺 ) |