Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme38.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme38.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme38.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme38.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme38.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme38.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme38.e |
⊢ 𝐸 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme38.d |
⊢ 𝐷 = ( ( 𝑢 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑢 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme38.v |
⊢ 𝑉 = ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) |
10 |
|
cdleme38.x |
⊢ 𝑋 = ( ( 𝑢 ∨ 𝐷 ) ∧ 𝑊 ) |
11 |
|
cdleme38.f |
⊢ 𝐹 = ( ( 𝑅 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑅 ) ∧ 𝑊 ) ) ) |
12 |
|
cdleme38.g |
⊢ 𝐺 = ( ( 𝑆 ∨ 𝑋 ) ∧ ( 𝐷 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
13 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
14 |
|
simp2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ) |
15 |
|
simp311 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
16 |
|
simp312 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
17 |
|
simp313 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐹 = 𝐺 ) |
18 |
15 16
|
jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
19 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
20 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
21 |
|
eqid |
⊢ ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
22 |
1 2 3 4 5 6 7 8 9 10 21 12
|
cdleme37m |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = 𝐺 ) |
23 |
13 14 18 19 20 22
|
syl113anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = 𝐺 ) |
24 |
17 23
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐹 = ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
25 |
15 16 24
|
3jca |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) ) |
26 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
27 |
26 1 2 3 4 5 6 7 9 11 21
|
cdleme36m |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = ( ( 𝑆 ∨ 𝑉 ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 = 𝑆 ) |
28 |
13 14 25 19 27
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 = 𝑆 ) |