Metamath Proof Explorer


Theorem cdleme38m

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 13-Mar-2013)

Ref Expression
Hypotheses cdleme38.l = ( le ‘ 𝐾 )
cdleme38.j = ( join ‘ 𝐾 )
cdleme38.m = ( meet ‘ 𝐾 )
cdleme38.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme38.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme38.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme38.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme38.d 𝐷 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
cdleme38.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
cdleme38.x 𝑋 = ( ( 𝑢 𝐷 ) 𝑊 )
cdleme38.f 𝐹 = ( ( 𝑅 𝑉 ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
cdleme38.g 𝐺 = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
Assertion cdleme38m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅 = 𝑆 )

Proof

Step Hyp Ref Expression
1 cdleme38.l = ( le ‘ 𝐾 )
2 cdleme38.j = ( join ‘ 𝐾 )
3 cdleme38.m = ( meet ‘ 𝐾 )
4 cdleme38.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme38.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme38.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme38.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
8 cdleme38.d 𝐷 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
9 cdleme38.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
10 cdleme38.x 𝑋 = ( ( 𝑢 𝐷 ) 𝑊 )
11 cdleme38.f 𝐹 = ( ( 𝑅 𝑉 ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
12 cdleme38.g 𝐺 = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
13 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
14 simp2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) )
15 simp311 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
16 simp312 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
17 simp313 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐹 = 𝐺 )
18 15 16 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) )
19 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) )
20 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) )
21 eqid ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) )
22 1 2 3 4 5 6 7 8 9 10 21 12 cdleme37m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) = 𝐺 )
23 13 14 18 19 20 22 syl113anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) = 𝐺 )
24 17 23 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐹 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) )
25 15 16 24 3jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) ) )
26 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
27 26 1 2 3 4 5 6 7 9 11 21 cdleme36m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = ( ( 𝑆 𝑉 ) ( 𝐸 ( ( 𝑡 𝑆 ) 𝑊 ) ) ) ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ) ) → 𝑅 = 𝑆 )
28 13 14 25 19 27 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅 = 𝑆 )