Metamath Proof Explorer


Theorem cdleme38n

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. TODO shorter if proved directly from cdleme36m and cdleme37m ? (Contributed by NM, 14-Mar-2013)

Ref Expression
Hypotheses cdleme38.l = ( le ‘ 𝐾 )
cdleme38.j = ( join ‘ 𝐾 )
cdleme38.m = ( meet ‘ 𝐾 )
cdleme38.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme38.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme38.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme38.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme38.d 𝐷 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
cdleme38.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
cdleme38.x 𝑋 = ( ( 𝑢 𝐷 ) 𝑊 )
cdleme38.f 𝐹 = ( ( 𝑅 𝑉 ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
cdleme38.g 𝐺 = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
Assertion cdleme38n ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐹𝐺 )

Proof

Step Hyp Ref Expression
1 cdleme38.l = ( le ‘ 𝐾 )
2 cdleme38.j = ( join ‘ 𝐾 )
3 cdleme38.m = ( meet ‘ 𝐾 )
4 cdleme38.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme38.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme38.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme38.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
8 cdleme38.d 𝐷 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
9 cdleme38.v 𝑉 = ( ( 𝑡 𝐸 ) 𝑊 )
10 cdleme38.x 𝑋 = ( ( 𝑢 𝐷 ) 𝑊 )
11 cdleme38.f 𝐹 = ( ( 𝑅 𝑉 ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
12 cdleme38.g 𝐺 = ( ( 𝑆 𝑋 ) ( 𝐷 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
13 simp313 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅𝑆 )
14 simpl1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
15 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → 𝑃𝑄 )
16 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
17 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
18 simp311 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
19 18 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → 𝑅 ( 𝑃 𝑄 ) )
20 simp312 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
21 20 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → 𝑆 ( 𝑃 𝑄 ) )
22 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → 𝐹 = 𝐺 )
23 19 21 22 3jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) )
24 simpl32 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) )
25 simpl33 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 cdleme38m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝐹 = 𝐺 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅 = 𝑆 )
27 14 15 16 17 23 24 25 26 syl133anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) ∧ 𝐹 = 𝐺 ) → 𝑅 = 𝑆 )
28 27 ex ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝐹 = 𝐺𝑅 = 𝑆 ) )
29 28 necon3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅𝑆𝐹𝐺 ) )
30 13 29 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐹𝐺 )