Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme39.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme39.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme39.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme39.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme39.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme39.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
7 |
|
cdleme39.e |
⊢ 𝐸 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
8 |
|
cdleme39.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme39.y |
⊢ 𝑌 = ( ( 𝑢 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑢 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme39.z |
⊢ 𝑍 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑌 ∨ ( ( 𝑆 ∨ 𝑢 ) ∧ 𝑊 ) ) ) |
11 |
|
eqid |
⊢ ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) = ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) |
12 |
|
eqid |
⊢ ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) = ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) |
13 |
|
eqid |
⊢ ( ( 𝑅 ∨ ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑅 ) ∧ 𝑊 ) ) ) = ( ( 𝑅 ∨ ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑅 ) ∧ 𝑊 ) ) ) |
14 |
|
eqid |
⊢ ( ( 𝑆 ∨ ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) ) ∧ ( 𝑌 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑆 ∨ ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) ) ∧ ( 𝑌 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
15 |
1 2 3 4 5 6 7 9 11 12 13 14
|
cdleme38n |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑅 ∨ ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ≠ ( ( 𝑆 ∨ ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) ) ∧ ( 𝑌 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
16 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
17 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ∈ 𝐴 ) |
18 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑄 ∈ 𝐴 ) |
19 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 ∈ 𝐴 ) |
20 |
|
simp22r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑅 ≤ 𝑊 ) |
21 |
|
simp311 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) |
22 |
|
simp32l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) |
23 |
1 2 3 4 5 6 7 8 11
|
cdleme39a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ) ) → 𝐺 = ( ( 𝑅 ∨ ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ) |
24 |
16 17 18 19 20 21 22 23
|
syl322anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐺 = ( ( 𝑅 ∨ ( ( 𝑡 ∨ 𝐸 ) ∧ 𝑊 ) ) ∧ ( 𝐸 ∨ ( ( 𝑡 ∨ 𝑅 ) ∧ 𝑊 ) ) ) ) |
25 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑆 ∈ 𝐴 ) |
26 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑆 ≤ 𝑊 ) |
27 |
|
simp312 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
28 |
|
simp33l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ) |
29 |
1 2 3 4 5 6 9 10 12
|
cdleme39a |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ) ) → 𝑍 = ( ( 𝑆 ∨ ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) ) ∧ ( 𝑌 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
30 |
16 17 18 25 26 27 28 29
|
syl322anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑍 = ( ( 𝑆 ∨ ( ( 𝑢 ∨ 𝑌 ) ∧ 𝑊 ) ) ∧ ( 𝑌 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
31 |
15 24 30
|
3netr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( ( 𝑡 ∈ 𝐴 ∧ ¬ 𝑡 ≤ 𝑊 ) ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ ¬ 𝑢 ≤ 𝑊 ) ∧ ¬ 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝐺 ≠ 𝑍 ) |