Metamath Proof Explorer


Theorem cdleme39n

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. E , Y , G , Z serve as f(t), f(u), f_t( R ), f_t( S ). Put hypotheses of cdleme38n in convention of cdleme32sn1awN . TODO see if this hypothesis conversion would be better if done earlier. (Contributed by NM, 15-Mar-2013)

Ref Expression
Hypotheses cdleme39.l = ( le ‘ 𝐾 )
cdleme39.j = ( join ‘ 𝐾 )
cdleme39.m = ( meet ‘ 𝐾 )
cdleme39.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme39.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme39.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme39.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme39.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
cdleme39.y 𝑌 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
cdleme39.z 𝑍 = ( ( 𝑃 𝑄 ) ( 𝑌 ( ( 𝑆 𝑢 ) 𝑊 ) ) )
Assertion cdleme39n ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐺𝑍 )

Proof

Step Hyp Ref Expression
1 cdleme39.l = ( le ‘ 𝐾 )
2 cdleme39.j = ( join ‘ 𝐾 )
3 cdleme39.m = ( meet ‘ 𝐾 )
4 cdleme39.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme39.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme39.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme39.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
8 cdleme39.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
9 cdleme39.y 𝑌 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
10 cdleme39.z 𝑍 = ( ( 𝑃 𝑄 ) ( 𝑌 ( ( 𝑆 𝑢 ) 𝑊 ) ) )
11 eqid ( ( 𝑡 𝐸 ) 𝑊 ) = ( ( 𝑡 𝐸 ) 𝑊 )
12 eqid ( ( 𝑢 𝑌 ) 𝑊 ) = ( ( 𝑢 𝑌 ) 𝑊 )
13 eqid ( ( 𝑅 ( ( 𝑡 𝐸 ) 𝑊 ) ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) ) = ( ( 𝑅 ( ( 𝑡 𝐸 ) 𝑊 ) ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) )
14 eqid ( ( 𝑆 ( ( 𝑢 𝑌 ) 𝑊 ) ) ( 𝑌 ( ( 𝑢 𝑆 ) 𝑊 ) ) ) = ( ( 𝑆 ( ( 𝑢 𝑌 ) 𝑊 ) ) ( 𝑌 ( ( 𝑢 𝑆 ) 𝑊 ) ) )
15 1 2 3 4 5 6 7 9 11 12 13 14 cdleme38n ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑅 ( ( 𝑡 𝐸 ) 𝑊 ) ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) ) ≠ ( ( 𝑆 ( ( 𝑢 𝑌 ) 𝑊 ) ) ( 𝑌 ( ( 𝑢 𝑆 ) 𝑊 ) ) ) )
16 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
17 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝐴 )
18 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑄𝐴 )
19 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅𝐴 )
20 simp22r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑅 𝑊 )
21 simp311 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
22 simp32l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) )
23 1 2 3 4 5 6 7 8 11 cdleme39a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ) ) → 𝐺 = ( ( 𝑅 ( ( 𝑡 𝐸 ) 𝑊 ) ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) ) )
24 16 17 18 19 20 21 22 23 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐺 = ( ( 𝑅 ( ( 𝑡 𝐸 ) 𝑊 ) ) ( 𝐸 ( ( 𝑡 𝑅 ) 𝑊 ) ) ) )
25 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑆𝐴 )
26 simp23r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑆 𝑊 )
27 simp312 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑆 ( 𝑃 𝑄 ) )
28 simp33l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) )
29 1 2 3 4 5 6 9 10 12 cdleme39a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑃 𝑄 ) ∧ ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ) ) → 𝑍 = ( ( 𝑆 ( ( 𝑢 𝑌 ) 𝑊 ) ) ( 𝑌 ( ( 𝑢 𝑆 ) 𝑊 ) ) ) )
30 16 17 18 25 26 27 28 29 syl322anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝑍 = ( ( 𝑆 ( ( 𝑢 𝑌 ) 𝑊 ) ) ( 𝑌 ( ( 𝑢 𝑆 ) 𝑊 ) ) ) )
31 15 24 30 3netr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( ( 𝑡𝐴 ∧ ¬ 𝑡 𝑊 ) ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) ∧ ( ( 𝑢𝐴 ∧ ¬ 𝑢 𝑊 ) ∧ ¬ 𝑢 ( 𝑃 𝑄 ) ) ) ) → 𝐺𝑍 )