| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme1.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme1.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme1.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme1.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme1.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme1.f | 
							⊢ 𝐹  =  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme3c.z | 
							⊢  0   =  ( 0. ‘ 𝐾 )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 10 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 11 | 
							
								10
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 12 | 
							
								
							 | 
							simpr3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 14 | 
							
								13 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							hlop | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OP )  | 
						
						
							| 17 | 
							
								16
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐾  ∈  OP )  | 
						
						
							| 18 | 
							
								13 8
							 | 
							op0cl | 
							⊢ ( 𝐾  ∈  OP  →   0   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →   0   ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								13 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧   0   ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ∨   0  )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								11 15 19 20
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨   0  )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr2l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								1 2 3 4 5 6 7 13
							 | 
							cdleme1b | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								22 23 24 12 25
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐹  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								13 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  ( Base ‘ 𝐾 )  ∧  𝐹  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ∨  𝐹 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								11 15 26 27
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨  𝐹 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 29 | 
							
								13 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								23 29
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								13 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								24 31
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								13 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 34 | 
							
								11 30 32 33
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 35 | 
							
								13 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 37 | 
							
								13 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 38 | 
							
								11 34 36 37
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 39 | 
							
								6 38
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑈  ≤  𝑊 )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 41 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑈  ≤  𝑊  ∧  ¬  𝑅  ≤  𝑊 )  →  𝑈  ≠  𝑅 )  | 
						
						
							| 42 | 
							
								39 40 41
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑈  ≠  𝑅 )  | 
						
						
							| 43 | 
							
								42
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑅  ≠  𝑈 )  | 
						
						
							| 44 | 
							
								1 2 3 4 5 6
							 | 
							lhpat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 45 | 
							
								44
							 | 
							3adant3r3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 46 | 
							
								
							 | 
							eqid | 
							⊢ (  ⋖  ‘ 𝐾 )  =  (  ⋖  ‘ 𝐾 )  | 
						
						
							| 47 | 
							
								2 46 4
							 | 
							atcvr1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑅  ≠  𝑈  ↔  𝑅 (  ⋖  ‘ 𝐾 ) ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 48 | 
							
								9 12 45 47
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ≠  𝑈  ↔  𝑅 (  ⋖  ‘ 𝐾 ) ( 𝑅  ∨  𝑈 ) ) )  | 
						
						
							| 49 | 
							
								43 48
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝑅 (  ⋖  ‘ 𝐾 ) ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 50 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐾  ∈  OL )  | 
						
						
							| 52 | 
							
								13 2 8
							 | 
							olj01 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑅  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑅  ∨   0  )  =  𝑅 )  | 
						
						
							| 53 | 
							
								51 15 52
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨   0  )  =  𝑅 )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 55 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨  𝐹 )  =  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 56 | 
							
								22 23 24 54 55
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨  𝐹 )  =  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 57 | 
							
								49 53 56
							 | 
							3brtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨   0  ) (  ⋖  ‘ 𝐾 ) ( 𝑅  ∨  𝐹 ) )  | 
						
						
							| 58 | 
							
								13 46
							 | 
							cvrne | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑅  ∨   0  )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝐹 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( 𝑅  ∨   0  ) (  ⋖  ‘ 𝐾 ) ( 𝑅  ∨  𝐹 ) )  →  ( 𝑅  ∨   0  )  ≠  ( 𝑅  ∨  𝐹 ) )  | 
						
						
							| 59 | 
							
								9 21 28 57 58
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  ( 𝑅  ∨   0  )  ≠  ( 𝑅  ∨  𝐹 ) )  | 
						
						
							| 60 | 
							
								
							 | 
							oveq2 | 
							⊢ (  0   =  𝐹  →  ( 𝑅  ∨   0  )  =  ( 𝑅  ∨  𝐹 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							necon3i | 
							⊢ ( ( 𝑅  ∨   0  )  ≠  ( 𝑅  ∨  𝐹 )  →   0   ≠  𝐹 )  | 
						
						
							| 62 | 
							
								59 61
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →   0   ≠  𝐹 )  | 
						
						
							| 63 | 
							
								62
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐹  ≠   0  )  |