Metamath Proof Explorer


Theorem cdleme3fa

Description: Part of proof of Lemma E in Crawley p. 113. See cdleme3 . (Contributed by NM, 6-Oct-2012)

Ref Expression
Hypotheses cdleme1.l = ( le ‘ 𝐾 )
cdleme1.j = ( join ‘ 𝐾 )
cdleme1.m = ( meet ‘ 𝐾 )
cdleme1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme1.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme1.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
Assertion cdleme3fa ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 cdleme1.l = ( le ‘ 𝐾 )
2 cdleme1.j = ( join ‘ 𝐾 )
3 cdleme1.m = ( meet ‘ 𝐾 )
4 cdleme1.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme1.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme1.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme1.f 𝐹 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
8 eqid ( ( 𝑃 𝑅 ) 𝑊 ) = ( ( 𝑃 𝑅 ) 𝑊 )
9 1 2 3 4 5 6 7 8 cdleme3h ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) ) → 𝐹𝐴 )