| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme1.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme1.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme1.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme1.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme1.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme1.f | 
							⊢ 𝐹  =  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme3.3 | 
							⊢ 𝑉  =  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme3d | 
							⊢ 𝐹  =  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 11 | 
							
								10
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 12 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 16 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6
							 | 
							lhpat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								13 14 15 16 17
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 20 | 
							
								19 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								10 12 18 20
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 23 | 
							
								12 22
							 | 
							jca | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 24 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme3e | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑉  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								13 14 15 23 24
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ∈  𝐴 )  | 
						
						
							| 26 | 
							
								19 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  →  ( 𝑄  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								10 15 25 26
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 28 | 
							
								19 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  ≤  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 29 | 
							
								11 21 27 28
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  ≤  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 30 | 
							
								9 29
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ≤  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simp22r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑄  ≤  𝑊 )  | 
						
						
							| 32 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 8
							 | 
							cdleme0e | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ≠  𝑉 )  | 
						
						
							| 35 | 
							
								13 14 15 32 33 34
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ≠  𝑉 )  | 
						
						
							| 36 | 
							
								1 2 4
							 | 
							hlatexch2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑈  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  ∧  𝑈  ≠  𝑉 )  →  ( 𝑈  ≤  ( 𝑄  ∨  𝑉 )  →  𝑄  ≤  ( 𝑈  ∨  𝑉 ) ) )  | 
						
						
							| 37 | 
							
								10 18 15 25 35 36
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑈  ≤  ( 𝑄  ∨  𝑉 )  →  𝑄  ≤  ( 𝑈  ∨  𝑉 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 39 | 
							
								19 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 40 | 
							
								10 38 15 39
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 42 | 
							
								19 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								19 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 45 | 
							
								11 40 43 44
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 46 | 
							
								6 45
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ≤  𝑊 )  | 
						
						
							| 47 | 
							
								19 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 48 | 
							
								10 38 12 47
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 49 | 
							
								19 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 50 | 
							
								11 48 43 49
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 51 | 
							
								8 50
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≤  𝑊 )  | 
						
						
							| 52 | 
							
								19 4
							 | 
							atbase | 
							⊢ ( 𝑈  ∈  𝐴  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								18 52
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 54 | 
							
								19 4
							 | 
							atbase | 
							⊢ ( 𝑉  ∈  𝐴  →  𝑉  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 55 | 
							
								25 54
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 56 | 
							
								19 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑈  ∈  ( Base ‘ 𝐾 )  ∧  𝑉  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑈  ≤  𝑊  ∧  𝑉  ≤  𝑊 )  ↔  ( 𝑈  ∨  𝑉 )  ≤  𝑊 ) )  | 
						
						
							| 57 | 
							
								11 53 55 43 56
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑈  ≤  𝑊  ∧  𝑉  ≤  𝑊 )  ↔  ( 𝑈  ∨  𝑉 )  ≤  𝑊 ) )  | 
						
						
							| 58 | 
							
								46 51 57
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑈  ∨  𝑉 )  ≤  𝑊 )  | 
						
						
							| 59 | 
							
								19 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 60 | 
							
								15 59
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 61 | 
							
								19 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑈  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  →  ( 𝑈  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 62 | 
							
								10 18 25 61
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑈  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 63 | 
							
								19 1
							 | 
							lattr | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑈  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ≤  ( 𝑈  ∨  𝑉 )  ∧  ( 𝑈  ∨  𝑉 )  ≤  𝑊 )  →  𝑄  ≤  𝑊 ) )  | 
						
						
							| 64 | 
							
								11 60 62 43 63
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑄  ≤  ( 𝑈  ∨  𝑉 )  ∧  ( 𝑈  ∨  𝑉 )  ≤  𝑊 )  →  𝑄  ≤  𝑊 ) )  | 
						
						
							| 65 | 
							
								58 64
							 | 
							mpan2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ≤  ( 𝑈  ∨  𝑉 )  →  𝑄  ≤  𝑊 ) )  | 
						
						
							| 66 | 
							
								37 65
							 | 
							syld | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑈  ≤  ( 𝑄  ∨  𝑉 )  →  𝑄  ≤  𝑊 ) )  | 
						
						
							| 67 | 
							
								31 66
							 | 
							mtod | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑈  ≤  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝐹  ≤  ( 𝑄  ∨  𝑉 )  ∧  ¬  𝑈  ≤  ( 𝑄  ∨  𝑉 ) )  →  𝐹  ≠  𝑈 )  | 
						
						
							| 69 | 
							
								30 67 68
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ≠  𝑈 )  |