| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme1.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme1.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme1.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme1.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme1.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme1.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme1.f | 
							⊢ 𝐹  =  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme3.3 | 
							⊢ 𝑉  =  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme3d | 
							⊢ 𝐹  =  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 11 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 12 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6
							 | 
							lhpat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 17 | 
							
								12 13 14 15 16
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ∈  𝐴 )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 19 | 
							
								18 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								10 11 17 19
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 22 | 
							
								11 21
							 | 
							jca | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 23 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme3e | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑉  ∈  𝐴 )  | 
						
						
							| 24 | 
							
								12 13 14 22 23
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								18 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  →  ( 𝑄  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								10 14 24 25
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								10
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 28 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 29 | 
							
								18 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 30 | 
							
								10 28 14 29
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 32 | 
							
								18 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 34 | 
							
								18 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 35 | 
							
								27 30 33 34
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 36 | 
							
								6 35
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ≤  𝑊 )  | 
						
						
							| 37 | 
							
								
							 | 
							simp23r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 38 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑈  ≤  𝑊  ∧  ¬  𝑅  ≤  𝑊 )  →  𝑈  ≠  𝑅 )  | 
						
						
							| 39 | 
							
								36 37 38
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑈  ≠  𝑅 )  | 
						
						
							| 40 | 
							
								39
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≠  𝑈 )  | 
						
						
							| 41 | 
							
								
							 | 
							eqid | 
							⊢ ( Lines ‘ 𝐾 )  =  ( Lines ‘ 𝐾 )  | 
						
						
							| 42 | 
							
								
							 | 
							eqid | 
							⊢ ( pmap ‘ 𝐾 )  =  ( pmap ‘ 𝐾 )  | 
						
						
							| 43 | 
							
								2 4 41 42
							 | 
							linepmap | 
							⊢ ( ( ( 𝐾  ∈  Lat  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  ∧  𝑅  ≠  𝑈 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( 𝑅  ∨  𝑈 ) )  ∈  ( Lines ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								27 11 17 40 43
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( pmap ‘ 𝐾 ) ‘ ( 𝑅  ∨  𝑈 ) )  ∈  ( Lines ‘ 𝐾 ) )  | 
						
						
							| 45 | 
							
								18 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								10 28 11 45
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								18 1 3
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 48 | 
							
								27 46 33 47
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 49 | 
							
								8 48
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≤  𝑊 )  | 
						
						
							| 50 | 
							
								
							 | 
							simp22r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑄  ≤  𝑊 )  | 
						
						
							| 51 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑉  ≤  𝑊  ∧  ¬  𝑄  ≤  𝑊 )  →  𝑉  ≠  𝑄 )  | 
						
						
							| 52 | 
							
								49 50 51
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≠  𝑄 )  | 
						
						
							| 53 | 
							
								52
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ≠  𝑉 )  | 
						
						
							| 54 | 
							
								2 4 41 42
							 | 
							linepmap | 
							⊢ ( ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  ∧  𝑄  ≠  𝑉 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( 𝑄  ∨  𝑉 ) )  ∈  ( Lines ‘ 𝐾 ) )  | 
						
						
							| 55 | 
							
								27 14 24 53 54
							 | 
							syl31anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( pmap ‘ 𝐾 ) ‘ ( 𝑄  ∨  𝑉 ) )  ∈  ( Lines ‘ 𝐾 ) )  | 
						
						
							| 56 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑈  ∈  𝐴 )  →  𝑅  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 57 | 
							
								10 11 17 56
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( 𝑅  ∨  𝑈 ) )  | 
						
						
							| 58 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑉  ≤  𝑊  ∧  ¬  𝑅  ≤  𝑊 )  →  𝑉  ≠  𝑅 )  | 
						
						
							| 59 | 
							
								49 37 58
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑉  ≠  𝑅 )  | 
						
						
							| 60 | 
							
								59
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≠  𝑉 )  | 
						
						
							| 61 | 
							
								1 2 4
							 | 
							hlatexch2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑅  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  ∧  𝑅  ≠  𝑉 )  →  ( 𝑅  ≤  ( 𝑄  ∨  𝑉 )  →  𝑄  ≤  ( 𝑅  ∨  𝑉 ) ) )  | 
						
						
							| 62 | 
							
								10 11 14 24 60 61
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑄  ∨  𝑉 )  →  𝑄  ≤  ( 𝑅  ∨  𝑉 ) ) )  | 
						
						
							| 63 | 
							
								8
							 | 
							oveq2i | 
							⊢ ( 𝑅  ∨  𝑉 )  =  ( 𝑅  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  | 
						
						
							| 64 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 65 | 
							
								10 28 11 64
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 66 | 
							
								18 1 3
							 | 
							latmle1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 67 | 
							
								27 46 33 66
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 68 | 
							
								18 4
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 69 | 
							
								11 68
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 70 | 
							
								18 3
							 | 
							latmcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 71 | 
							
								27 46 33 70
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 72 | 
							
								18 1 2
							 | 
							latjle12 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑅  ∈  ( Base ‘ 𝐾 )  ∧  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑅 )  ∧  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑅 ) )  ↔  ( 𝑅  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 73 | 
							
								27 69 71 46 72
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅  ≤  ( 𝑃  ∨  𝑅 )  ∧  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑅 ) )  ↔  ( 𝑅  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 74 | 
							
								65 67 73
							 | 
							mpbi2and | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  ( ( 𝑃  ∨  𝑅 )  ∧  𝑊 ) )  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 75 | 
							
								63 74
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  𝑉 )  ≤  ( 𝑃  ∨  𝑅 ) )  | 
						
						
							| 76 | 
							
								18 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 77 | 
							
								14 76
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 78 | 
							
								18 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑅  ∈  𝐴  ∧  𝑉  ∈  𝐴 )  →  ( 𝑅  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 79 | 
							
								10 11 24 78
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 80 | 
							
								18 1
							 | 
							lattr | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑅  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑄  ≤  ( 𝑅  ∨  𝑉 )  ∧  ( 𝑅  ∨  𝑉 )  ≤  ( 𝑃  ∨  𝑅 ) )  →  𝑄  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 81 | 
							
								27 77 79 46 80
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑄  ≤  ( 𝑅  ∨  𝑉 )  ∧  ( 𝑅  ∨  𝑉 )  ≤  ( 𝑃  ∨  𝑅 ) )  →  𝑄  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 82 | 
							
								75 81
							 | 
							mpan2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ≤  ( 𝑅  ∨  𝑉 )  →  𝑄  ≤  ( 𝑃  ∨  𝑅 ) ) )  | 
						
						
							| 83 | 
							
								15
							 | 
							necomd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑄  ≠  𝑃 )  | 
						
						
							| 84 | 
							
								1 2 4
							 | 
							hlatexch1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  𝑃  ∈  𝐴 )  ∧  𝑄  ≠  𝑃 )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 85 | 
							
								10 14 11 28 83 84
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ≤  ( 𝑃  ∨  𝑅 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 86 | 
							
								62 82 85
							 | 
							3syld | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ≤  ( 𝑄  ∨  𝑉 )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 87 | 
							
								21 86
							 | 
							mtod | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑅  ≤  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							nbrne1 | 
							⊢ ( ( 𝑅  ≤  ( 𝑅  ∨  𝑈 )  ∧  ¬  𝑅  ≤  ( 𝑄  ∨  𝑉 ) )  →  ( 𝑅  ∨  𝑈 )  ≠  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 89 | 
							
								57 87 88
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∨  𝑈 )  ≠  ( 𝑄  ∨  𝑉 ) )  | 
						
						
							| 90 | 
							
								14 15
							 | 
							jca | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 92 | 
							
								
							 | 
							eqid | 
							⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 )  | 
						
						
							| 93 | 
							
								1 2 3 4 5 6 7 92
							 | 
							cdleme3c | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  𝑃  ≠  𝑄 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) ) )  →  𝐹  ≠  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 94 | 
							
								12 13 90 91 93
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ≠  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 95 | 
							
								9 94
							 | 
							eqnetrrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  ≠  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 96 | 
							
								18 3 92 4 41 42
							 | 
							2lnat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  ( 𝑅  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝑉 )  ∈  ( Base ‘ 𝐾 ) )  ∧  ( ( ( pmap ‘ 𝐾 ) ‘ ( 𝑅  ∨  𝑈 ) )  ∈  ( Lines ‘ 𝐾 )  ∧  ( ( pmap ‘ 𝐾 ) ‘ ( 𝑄  ∨  𝑉 ) )  ∈  ( Lines ‘ 𝐾 ) )  ∧  ( ( 𝑅  ∨  𝑈 )  ≠  ( 𝑄  ∨  𝑉 )  ∧  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  ≠  ( 0. ‘ 𝐾 ) ) )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  ∈  𝐴 )  | 
						
						
							| 97 | 
							
								10 20 26 44 55 89 95 96
							 | 
							syl322anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑅  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝑉 ) )  ∈  𝐴 )  | 
						
						
							| 98 | 
							
								9 97
							 | 
							eqeltrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ¬  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐹  ∈  𝐴 )  |