Metamath Proof Explorer


Theorem cdleme40n

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(x) is one-to-one on P .\/ Q line. TODO: FIX COMMENT. TODO get rid of '.<' class? (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme40.b 𝐵 = ( Base ‘ 𝐾 )
cdleme40.l = ( le ‘ 𝐾 )
cdleme40.j = ( join ‘ 𝐾 )
cdleme40.m = ( meet ‘ 𝐾 )
cdleme40.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme40.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme40.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme40.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme40.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme40.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme40.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme40a1.y 𝑌 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
cdleme40a1.c 𝐶 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) )
cdleme40.t 𝑇 = ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) )
cdleme40.f 𝐹 = ( ( 𝑃 𝑄 ) ( 𝑇 ( ( 𝑆 𝑣 ) 𝑊 ) ) )
cdleme40a1.x 𝑋 = ( ( 𝑃 𝑄 ) ( 𝑇 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
cdleme40.o 𝑂 = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝑋 ) )
cdleme40.v 𝑉 = if ( 𝑢 ( 𝑃 𝑄 ) , 𝑂 , < )
cdleme40a1.z 𝑍 = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝐹 ) )
Assertion cdleme40n ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑢 𝑉 )

Proof

Step Hyp Ref Expression
1 cdleme40.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme40.l = ( le ‘ 𝐾 )
3 cdleme40.j = ( join ‘ 𝐾 )
4 cdleme40.m = ( meet ‘ 𝐾 )
5 cdleme40.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme40.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme40.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme40.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdleme40.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdleme40.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
11 cdleme40.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
12 cdleme40a1.y 𝑌 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
13 cdleme40a1.c 𝐶 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝑌 ) )
14 cdleme40.t 𝑇 = ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) )
15 cdleme40.f 𝐹 = ( ( 𝑃 𝑄 ) ( 𝑇 ( ( 𝑆 𝑣 ) 𝑊 ) ) )
16 cdleme40a1.x 𝑋 = ( ( 𝑃 𝑄 ) ( 𝑇 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
17 cdleme40.o 𝑂 = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝑋 ) )
18 cdleme40.v 𝑉 = if ( 𝑢 ( 𝑃 𝑄 ) , 𝑂 , < )
19 cdleme40a1.z 𝑍 = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝐹 ) )
20 1 fvexi 𝐵 ∈ V
21 nfv 𝑣 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) )
22 nfcv 𝑣 𝑅 / 𝑠 𝑁
23 nfra1 𝑣𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝐹 )
24 nfcv 𝑣 𝐵
25 23 24 nfriota 𝑣 ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝐹 ) )
26 19 25 nfcxfr 𝑣 𝑍
27 22 26 nfne 𝑣 𝑅 / 𝑠 𝑁𝑍
28 27 a1i ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → Ⅎ 𝑣 𝑅 / 𝑠 𝑁𝑍 )
29 19 a1i ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑍 = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = 𝐹 ) ) )
30 neeq2 ( 𝐹 = 𝑍 → ( 𝑅 / 𝑠 𝑁𝐹 𝑅 / 𝑠 𝑁𝑍 ) )
31 30 adantl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ 𝐹 = 𝑍 ) → ( 𝑅 / 𝑠 𝑁𝐹 𝑅 / 𝑠 𝑁𝑍 ) )
32 simpl11 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
33 simpl12 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
34 simpl13 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
35 simpl21 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → 𝑃𝑄 )
36 simpl22 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
37 simpl23 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
38 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) )
39 simprl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → 𝑣𝐴 )
40 simprrl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑣 𝑊 )
41 simprrr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑣 ( 𝑃 𝑄 ) )
42 39 40 41 3jca ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → ( 𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) )
43 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme40m ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ∧ ( 𝑣𝐴 ∧ ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → 𝑅 / 𝑠 𝑁𝐹 )
44 32 33 34 35 36 37 38 42 43 syl332anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) ) → 𝑅 / 𝑠 𝑁𝐹 )
45 44 ex ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ( ( 𝑣𝐴 ∧ ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) ) → 𝑅 / 𝑠 𝑁𝐹 ) )
46 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
47 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆𝐴 )
48 simp23r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ¬ 𝑆 𝑊 )
49 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑃𝑄 )
50 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆 ( 𝑃 𝑄 ) )
51 1 2 3 4 5 6 7 14 15 19 cdleme25cl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑃𝑄𝑆 ( 𝑃 𝑄 ) ) ) → 𝑍𝐵 )
52 46 47 48 49 50 51 syl122anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑍𝐵 )
53 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
54 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
55 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
56 2 3 5 6 cdlemb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑣𝐴 ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) )
57 53 54 55 49 56 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → ∃ 𝑣𝐴 ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) )
58 21 28 29 31 45 52 57 riotasv3d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) ∧ 𝐵 ∈ V ) → 𝑅 / 𝑠 𝑁𝑍 )
59 20 58 mpan2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁𝑍 )
60 16 17 18 15 19 cdleme31sn1c ( ( 𝑆𝐴𝑆 ( 𝑃 𝑄 ) ) → 𝑆 / 𝑢 𝑉 = 𝑍 )
61 47 50 60 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆 / 𝑢 𝑉 = 𝑍 )
62 59 61 neeqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑢 𝑉 )