Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme40.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdleme40.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdleme40.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdleme40.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdleme40.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdleme40.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdleme40.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdleme40.e |
⊢ 𝐸 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
9 |
|
cdleme40.g |
⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdleme40.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐺 ) ) |
11 |
|
cdleme40.n |
⊢ 𝑁 = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , 𝐷 ) |
12 |
|
cdleme40a1.y |
⊢ 𝑌 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐸 ∨ ( ( 𝑅 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
13 |
|
cdleme40a1.c |
⊢ 𝐶 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝑌 ) ) |
14 |
|
cdleme40.t |
⊢ 𝑇 = ( ( 𝑣 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑣 ) ∧ 𝑊 ) ) ) |
15 |
|
cdleme40.f |
⊢ 𝐹 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑇 ∨ ( ( 𝑆 ∨ 𝑣 ) ∧ 𝑊 ) ) ) |
16 |
|
cdleme40a1.x |
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝑇 ∨ ( ( 𝑢 ∨ 𝑣 ) ∧ 𝑊 ) ) ) |
17 |
|
cdleme40.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑧 = 𝑋 ) ) |
18 |
|
cdleme40.v |
⊢ 𝑉 = if ( 𝑢 ≤ ( 𝑃 ∨ 𝑄 ) , 𝑂 , < ) |
19 |
|
cdleme40a1.z |
⊢ 𝑍 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑧 = 𝐹 ) ) |
20 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
21 |
|
nfv |
⊢ Ⅎ 𝑣 ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) |
22 |
|
nfcv |
⊢ Ⅎ 𝑣 ⦋ 𝑅 / 𝑠 ⦌ 𝑁 |
23 |
|
nfra1 |
⊢ Ⅎ 𝑣 ∀ 𝑣 ∈ 𝐴 ( ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑧 = 𝐹 ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑣 𝐵 |
25 |
23 24
|
nfriota |
⊢ Ⅎ 𝑣 ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑧 = 𝐹 ) ) |
26 |
19 25
|
nfcxfr |
⊢ Ⅎ 𝑣 𝑍 |
27 |
22 26
|
nfne |
⊢ Ⅎ 𝑣 ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝑍 |
28 |
27
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → Ⅎ 𝑣 ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝑍 ) |
29 |
19
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → 𝑍 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑧 = 𝐹 ) ) ) |
30 |
|
neeq2 |
⊢ ( 𝐹 = 𝑍 → ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝐹 ↔ ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝑍 ) ) |
31 |
30
|
adantl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ 𝐹 = 𝑍 ) → ( ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝐹 ↔ ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝑍 ) ) |
32 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
33 |
|
simpl12 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
34 |
|
simpl13 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
35 |
|
simpl21 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
36 |
|
simpl22 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
37 |
|
simpl23 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
38 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) |
39 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → 𝑣 ∈ 𝐴 ) |
40 |
|
simprrl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑣 ≤ 𝑊 ) |
41 |
|
simprrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) |
42 |
39 40 41
|
3jca |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( 𝑣 ∈ 𝐴 ∧ ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cdleme40m |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ∧ ( 𝑣 ∈ 𝐴 ∧ ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝐹 ) |
44 |
32 33 34 35 36 37 38 42 43
|
syl332anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝐹 ) |
45 |
44
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ( ( 𝑣 ∈ 𝐴 ∧ ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝐹 ) ) |
46 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
47 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → 𝑆 ∈ 𝐴 ) |
48 |
|
simp23r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ¬ 𝑆 ≤ 𝑊 ) |
49 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → 𝑃 ≠ 𝑄 ) |
50 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
51 |
1 2 3 4 5 6 7 14 15 19
|
cdleme25cl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ∧ ( 𝑃 ≠ 𝑄 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑍 ∈ 𝐵 ) |
52 |
46 47 48 49 50 51
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → 𝑍 ∈ 𝐵 ) |
53 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
54 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
55 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
56 |
2 3 5 6
|
cdlemb2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ) → ∃ 𝑣 ∈ 𝐴 ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
57 |
53 54 55 49 56
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ∃ 𝑣 ∈ 𝐴 ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
58 |
21 28 29 31 45 52 57
|
riotasv3d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) ∧ 𝐵 ∈ V ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝑍 ) |
59 |
20 58
|
mpan2 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ 𝑍 ) |
60 |
16 17 18 15 19
|
cdleme31sn1c |
⊢ ( ( 𝑆 ∈ 𝐴 ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → ⦋ 𝑆 / 𝑢 ⦌ 𝑉 = 𝑍 ) |
61 |
47 50 60
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ⦋ 𝑆 / 𝑢 ⦌ 𝑉 = 𝑍 ) |
62 |
59 61
|
neeqtrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑅 ≠ 𝑆 ) ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ≠ ⦋ 𝑆 / 𝑢 ⦌ 𝑉 ) |