Metamath Proof Explorer


Theorem cdleme40w

Description: Part of proof of Lemma E in Crawley p. 113. Apply cdleme40v bound variable change to [_ S / u ]_ V . TODO: FIX COMMENT. (Contributed by NM, 19-Mar-2013)

Ref Expression
Hypotheses cdleme40.b 𝐵 = ( Base ‘ 𝐾 )
cdleme40.l = ( le ‘ 𝐾 )
cdleme40.j = ( join ‘ 𝐾 )
cdleme40.m = ( meet ‘ 𝐾 )
cdleme40.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme40.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme40.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme40.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme40.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme40.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme40.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme40.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme40r.y 𝑌 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
Assertion cdleme40w ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑠 𝑁 )

Proof

Step Hyp Ref Expression
1 cdleme40.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme40.l = ( le ‘ 𝐾 )
3 cdleme40.j = ( join ‘ 𝐾 )
4 cdleme40.m = ( meet ‘ 𝐾 )
5 cdleme40.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme40.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme40.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme40.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdleme40.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdleme40.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
11 cdleme40.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
12 cdleme40.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
13 cdleme40r.y 𝑌 = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
14 eqid ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
15 eqid ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) ) ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) ) )
16 eqid ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) = ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) )
17 eqid ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑆 𝑣 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑆 𝑣 ) 𝑊 ) ) )
18 eqid ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) )
19 eqid ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) ) = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) )
20 eqid if ( 𝑢 ( 𝑃 𝑄 ) , ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) ) , ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) ) ) = if ( 𝑢 ( 𝑃 𝑄 ) , ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) ) , ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) ) )
21 eqid ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑆 𝑣 ) 𝑊 ) ) ) ) ) = ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑆 𝑣 ) 𝑊 ) ) ) ) )
22 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21 cdleme40n ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑢 if ( 𝑢 ( 𝑃 𝑄 ) , ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) ) , ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) ) ) )
23 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆𝐴 )
24 eqid ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) ) = ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) )
25 1 2 3 4 5 6 7 8 9 10 11 12 24 16 18 19 20 cdleme40v ( 𝑆𝐴 𝑆 / 𝑠 𝑁 = 𝑆 / 𝑢 if ( 𝑢 ( 𝑃 𝑄 ) , ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) ) , ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) ) ) )
26 23 25 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑆 / 𝑠 𝑁 = 𝑆 / 𝑢 if ( 𝑢 ( 𝑃 𝑄 ) , ( 𝑧𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑃 𝑄 ) ) → 𝑧 = ( ( 𝑃 𝑄 ) ( ( ( 𝑣 𝑈 ) ( 𝑄 ( ( 𝑃 𝑣 ) 𝑊 ) ) ) ( ( 𝑢 𝑣 ) 𝑊 ) ) ) ) ) , ( ( 𝑢 𝑈 ) ( 𝑄 ( ( 𝑃 𝑢 ) 𝑊 ) ) ) ) )
27 22 26 neeqtrrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ 𝑆 ( 𝑃 𝑄 ) ∧ 𝑅𝑆 ) ) → 𝑅 / 𝑠 𝑁 𝑆 / 𝑠 𝑁 )