| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme42.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme42.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme42.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme42.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme42.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme42.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme42.v | 
							⊢ 𝑉  =  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2i | 
							⊢ ( 𝑅  ∨  𝑉 )  =  ( 𝑅  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme42a | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  →  ( 𝑅  ∨  𝑆 )  =  ( 𝑅  ∨  𝑉 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  →  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 )  =  ( ( 𝑅  ∨  𝑉 )  ∧  𝑊 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  →  ( 𝑅  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) )  =  ( 𝑅  ∨  ( ( 𝑅  ∨  𝑉 )  ∧  𝑊 ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eqtr2id | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  →  ( 𝑅  ∨  ( ( 𝑅  ∨  𝑉 )  ∧  𝑊 ) )  =  ( 𝑅  ∨  𝑉 ) )  |