Metamath Proof Explorer


Theorem cdleme42i

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 8-Mar-2013)

Ref Expression
Hypotheses cdleme41.b 𝐵 = ( Base ‘ 𝐾 )
cdleme41.l = ( le ‘ 𝐾 )
cdleme41.j = ( join ‘ 𝐾 )
cdleme41.m = ( meet ‘ 𝐾 )
cdleme41.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme41.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme41.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme41.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme41.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdleme41.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdleme41.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
cdleme41.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
cdleme41.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
cdleme41.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
cdleme34e.v 𝑉 = ( ( 𝑅 𝑆 ) 𝑊 )
Assertion cdleme42i ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) ( ( 𝐹𝑅 ) 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme41.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme41.l = ( le ‘ 𝐾 )
3 cdleme41.j = ( join ‘ 𝐾 )
4 cdleme41.m = ( meet ‘ 𝐾 )
5 cdleme41.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdleme41.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdleme41.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdleme41.d 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
9 cdleme41.e 𝐸 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
10 cdleme41.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐸 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdleme41.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐺 ) )
12 cdleme41.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐷 )
13 cdleme41.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ( 𝑥 𝑊 ) ) ) )
14 cdleme41.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
15 cdleme34e.v 𝑉 = ( ( 𝑅 𝑆 ) 𝑊 )
16 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝐾 ∈ HL )
17 16 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝐾 ∈ Lat )
18 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
19 simp2ll ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑅𝐴 )
20 1 5 atbase ( 𝑅𝐴𝑅𝐵 )
21 19 20 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑅𝐵 )
22 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑅𝐵 ) → ( 𝐹𝑅 ) ∈ 𝐵 )
23 18 21 22 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝐹𝑅 ) ∈ 𝐵 )
24 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑆𝐴 )
25 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴 ) → ( 𝑅 𝑆 ) ∈ 𝐵 )
26 16 19 24 25 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝑅 𝑆 ) ∈ 𝐵 )
27 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑊𝐻 )
28 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
29 27 28 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑊𝐵 )
30 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑅 𝑆 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐵 )
31 17 26 29 30 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐵 )
32 15 31 eqeltrid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑉𝐵 )
33 1 2 3 latlej1 ( ( 𝐾 ∈ Lat ∧ ( 𝐹𝑅 ) ∈ 𝐵𝑉𝐵 ) → ( 𝐹𝑅 ) ( ( 𝐹𝑅 ) 𝑉 ) )
34 17 23 32 33 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝐹𝑅 ) ( ( 𝐹𝑅 ) 𝑉 ) )
35 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cdleme42h ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝐹𝑆 ) ( ( 𝐹𝑅 ) 𝑉 ) )
36 1 5 atbase ( 𝑆𝐴𝑆𝐵 )
37 24 36 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → 𝑆𝐵 )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32fvcl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑆𝐵 ) → ( 𝐹𝑆 ) ∈ 𝐵 )
39 18 37 38 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( 𝐹𝑆 ) ∈ 𝐵 )
40 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ ( 𝐹𝑅 ) ∈ 𝐵𝑉𝐵 ) → ( ( 𝐹𝑅 ) 𝑉 ) ∈ 𝐵 )
41 17 23 32 40 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( 𝐹𝑅 ) 𝑉 ) ∈ 𝐵 )
42 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( ( 𝐹𝑅 ) ∈ 𝐵 ∧ ( 𝐹𝑆 ) ∈ 𝐵 ∧ ( ( 𝐹𝑅 ) 𝑉 ) ∈ 𝐵 ) ) → ( ( ( 𝐹𝑅 ) ( ( 𝐹𝑅 ) 𝑉 ) ∧ ( 𝐹𝑆 ) ( ( 𝐹𝑅 ) 𝑉 ) ) ↔ ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) ( ( 𝐹𝑅 ) 𝑉 ) ) )
43 17 23 39 41 42 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( ( 𝐹𝑅 ) ( ( 𝐹𝑅 ) 𝑉 ) ∧ ( 𝐹𝑆 ) ( ( 𝐹𝑅 ) 𝑉 ) ) ↔ ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) ( ( 𝐹𝑅 ) 𝑉 ) ) )
44 34 35 43 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) ∧ 𝑃𝑄 ) → ( ( 𝐹𝑅 ) ( 𝐹𝑆 ) ) ( ( 𝐹𝑅 ) 𝑉 ) )