Metamath Proof Explorer


Theorem cdleme4gfv

Description: Part of proof of Lemma D in Crawley p. 113. TODO: Can this replace uses of cdleme32a ? TODO: Can this be used to help prove the R or S case where X is an atom? TODO: Would an antecedent transformer like cdleme46f2g2 help? (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef47.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef47.l = ( le ‘ 𝐾 )
cdlemef47.j = ( join ‘ 𝐾 )
cdlemef47.m = ( meet ‘ 𝐾 )
cdlemef47.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef47.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef47.v 𝑉 = ( ( 𝑄 𝑃 ) 𝑊 )
cdlemef47.n 𝑁 = ( ( 𝑣 𝑉 ) ( 𝑃 ( ( 𝑄 𝑣 ) 𝑊 ) ) )
cdlemefs47.o 𝑂 = ( ( 𝑄 𝑃 ) ( 𝑁 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
cdlemef47.g 𝐺 = ( 𝑎𝐵 ↦ if ( ( 𝑄𝑃 ∧ ¬ 𝑎 𝑊 ) , ( 𝑐𝐵𝑢𝐴 ( ( ¬ 𝑢 𝑊 ∧ ( 𝑢 ( 𝑎 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ( 𝑄 𝑃 ) , ( 𝑏𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑄 𝑃 ) ) → 𝑏 = 𝑂 ) ) , 𝑢 / 𝑣 𝑁 ) ( 𝑎 𝑊 ) ) ) ) , 𝑎 ) )
Assertion cdleme4gfv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑆 ) ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemef47.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef47.l = ( le ‘ 𝐾 )
3 cdlemef47.j = ( join ‘ 𝐾 )
4 cdlemef47.m = ( meet ‘ 𝐾 )
5 cdlemef47.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef47.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef47.v 𝑉 = ( ( 𝑄 𝑃 ) 𝑊 )
8 cdlemef47.n 𝑁 = ( ( 𝑣 𝑉 ) ( 𝑃 ( ( 𝑄 𝑣 ) 𝑊 ) ) )
9 cdlemefs47.o 𝑂 = ( ( 𝑄 𝑃 ) ( 𝑁 ( ( 𝑢 𝑣 ) 𝑊 ) ) )
10 cdlemef47.g 𝐺 = ( 𝑎𝐵 ↦ if ( ( 𝑄𝑃 ∧ ¬ 𝑎 𝑊 ) , ( 𝑐𝐵𝑢𝐴 ( ( ¬ 𝑢 𝑊 ∧ ( 𝑢 ( 𝑎 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ( 𝑄 𝑃 ) , ( 𝑏𝐵𝑣𝐴 ( ( ¬ 𝑣 𝑊 ∧ ¬ 𝑣 ( 𝑄 𝑃 ) ) → 𝑏 = 𝑂 ) ) , 𝑢 / 𝑣 𝑁 ) ( 𝑎 𝑊 ) ) ) ) , 𝑎 ) )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
13 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
14 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑃𝑄 )
15 14 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝑄𝑃 )
16 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
17 simp3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) )
18 1 2 3 4 5 6 7 8 9 10 cdleme48fv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) ∧ ( 𝑄𝑃 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑆 ) ( 𝑋 𝑊 ) ) )
19 11 12 13 15 16 17 18 syl321anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑆 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑆 ) ( 𝑋 𝑊 ) ) )