| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef50.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef50.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef50.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef50.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef50.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef50.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef50.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef50.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs50.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef50.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) ) ,  𝑥 ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdleme50lebi | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑌  ↔  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 12 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdleme50lebi | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) )  →  ( 𝑌  ≤  𝑋  ↔  ( 𝐹 ‘ 𝑌 )  ≤  ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ancom2s | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑌  ≤  𝑋  ↔  ( 𝐹 ‘ 𝑌 )  ≤  ( 𝐹 ‘ 𝑋 ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							anbi12d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  ↔  ( ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 )  ∧  ( 𝐹 ‘ 𝑌 )  ≤  ( 𝐹 ‘ 𝑋 ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl1l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 16 | 
							
								15
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 17 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 19 | 
							
								1 2
							 | 
							latasymb | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  ↔  𝑋  =  𝑌 ) )  | 
						
						
							| 20 | 
							
								16 17 18 19
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝑋  ≤  𝑌  ∧  𝑌  ≤  𝑋 )  ↔  𝑋  =  𝑌 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) )  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							biid | 
							⊢ ( 𝑠  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							vex | 
							⊢ 𝑠  ∈  V  | 
						
						
							| 25 | 
							
								8 21
							 | 
							cdleme31sc | 
							⊢ ( 𝑠  ∈  V  →  ⦋ 𝑠  /  𝑡 ⦌ 𝐷  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							ax-mp | 
							⊢ ⦋ 𝑠  /  𝑡 ⦌ 𝐷  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							ifbieq2i | 
							⊢ if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  =  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 6 7 21 8 9 22 27 28 10
							 | 
							cdleme32fvcl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								29
							 | 
							adantrr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 31 | 
							
								
							 | 
							eqid | 
							⊢ if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  | 
						
						
							| 32 | 
							
								1 2 3 4 5 6 7 26 8 9 22 31 28 10
							 | 
							cdleme32fvcl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑌  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantrl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 34 | 
							
								1 2
							 | 
							latasymb | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐹 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 )  →  ( ( ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 )  ∧  ( 𝐹 ‘ 𝑌 )  ≤  ( 𝐹 ‘ 𝑋 ) )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 35 | 
							
								16 30 33 34
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 )  ∧  ( 𝐹 ‘ 𝑌 )  ≤  ( 𝐹 ‘ 𝑋 ) )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 36 | 
							
								14 20 35
							 | 
							3bitr3rd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  ↔  𝑋  =  𝑌 ) )  |