Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef50.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemef50.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemef50.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemef50.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemef50.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemef50.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemef50.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdlemef50.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
9 |
|
cdlemefs50.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdlemef50.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) , 𝑥 ) ) |
11 |
|
cdleme50ltrn.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) |
13 |
1 2 3 4 5 6 7 8 9 10 12
|
cdleme50ldil |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ) |
14 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
15 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → 𝑑 ∈ 𝐴 ) |
16 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ¬ 𝑑 ≤ 𝑊 ) |
17 |
1 2 3 4 5 6 7 8 9 10
|
cdleme50trn123 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ ¬ 𝑑 ≤ 𝑊 ) ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = 𝑈 ) |
18 |
14 15 16 17
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = 𝑈 ) |
19 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → 𝑒 ∈ 𝐴 ) |
20 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ¬ 𝑒 ≤ 𝑊 ) |
21 |
1 2 3 4 5 6 7 8 9 10
|
cdleme50trn123 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑒 ∈ 𝐴 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) = 𝑈 ) |
22 |
14 19 20 21
|
syl12anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) = 𝑈 ) |
23 |
18 22
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) ∧ ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) ) |
24 |
23
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑑 ∈ 𝐴 ∧ 𝑒 ∈ 𝐴 ) → ( ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) ) ) ) |
25 |
24
|
ralrimivv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ∀ 𝑑 ∈ 𝐴 ∀ 𝑒 ∈ 𝐴 ( ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) ) ) |
26 |
2 3 4 5 6 12 11
|
isltrn |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( 𝐹 ∈ 𝑇 ↔ ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑑 ∈ 𝐴 ∀ 𝑒 ∈ 𝐴 ( ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) ) ) ) ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐹 ∈ 𝑇 ↔ ( 𝐹 ∈ ( ( LDil ‘ 𝐾 ) ‘ 𝑊 ) ∧ ∀ 𝑑 ∈ 𝐴 ∀ 𝑒 ∈ 𝐴 ( ( ¬ 𝑑 ≤ 𝑊 ∧ ¬ 𝑒 ≤ 𝑊 ) → ( ( 𝑑 ∨ ( 𝐹 ‘ 𝑑 ) ) ∧ 𝑊 ) = ( ( 𝑒 ∨ ( 𝐹 ‘ 𝑒 ) ) ∧ 𝑊 ) ) ) ) ) |
28 |
13 25 27
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |