| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef50.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef50.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef50.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef50.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef50.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef50.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef50.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef50.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs50.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef50.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) ) ,  𝑥 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdlemef50.v | 
							⊢ 𝑉  =  ( ( 𝑄  ∨  𝑃 )  ∧  𝑊 )  | 
						
						
							| 12 | 
							
								
							 | 
							cdlemef50.n | 
							⊢ 𝑁  =  ( ( 𝑣  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							cdlemefs50.o | 
							⊢ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑁  ∨  ( ( 𝑢  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdlemef50.g | 
							⊢ 𝐺  =  ( 𝑎  ∈  𝐵  ↦  if ( ( 𝑄  ≠  𝑃  ∧  ¬  𝑎  ≤  𝑊 ) ,  ( ℩ 𝑐  ∈  𝐵 ∀ 𝑢  ∈  𝐴 ( ( ¬  𝑢  ≤  𝑊  ∧  ( 𝑢  ∨  ( 𝑎  ∧  𝑊 ) )  =  𝑎 )  →  𝑐  =  ( if ( 𝑢  ≤  ( 𝑄  ∨  𝑃 ) ,  ( ℩ 𝑏  ∈  𝐵 ∀ 𝑣  ∈  𝐴 ( ( ¬  𝑣  ≤  𝑊  ∧  ¬  𝑣  ≤  ( 𝑄  ∨  𝑃 ) )  →  𝑏  =  𝑂 ) ) ,  ⦋ 𝑢  /  𝑣 ⦌ 𝑁 )  ∨  ( 𝑎  ∧  𝑊 ) ) ) ) ,  𝑎 ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdleme50f | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  𝐹 : 𝐵 ⟶ 𝐵 )  | 
						
						
							| 16 | 
							
								15
							 | 
							frnd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ran  𝐹  ⊆  𝐵 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 11 12 13 14
							 | 
							cdlemeg46fvcl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑒  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑒 )  ∈  𝐵 )  | 
						
						
							| 18 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							cdleme48fgv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑒  ∈  𝐵 )  →  ( 𝐹 ‘ ( 𝐺 ‘ 𝑒 ) )  =  𝑒 )  | 
						
						
							| 19 | 
							
								
							 | 
							fveqeq2 | 
							⊢ ( 𝑑  =  ( 𝐺 ‘ 𝑒 )  →  ( ( 𝐹 ‘ 𝑑 )  =  𝑒  ↔  ( 𝐹 ‘ ( 𝐺 ‘ 𝑒 ) )  =  𝑒 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							rspcev | 
							⊢ ( ( ( 𝐺 ‘ 𝑒 )  ∈  𝐵  ∧  ( 𝐹 ‘ ( 𝐺 ‘ 𝑒 ) )  =  𝑒 )  →  ∃ 𝑑  ∈  𝐵 ( 𝐹 ‘ 𝑑 )  =  𝑒 )  | 
						
						
							| 21 | 
							
								17 18 20
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑒  ∈  𝐵 )  →  ∃ 𝑑  ∈  𝐵 ( 𝐹 ‘ 𝑑 )  =  𝑒 )  | 
						
						
							| 22 | 
							
								15
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑒  ∈  𝐵 )  →  𝐹 : 𝐵 ⟶ 𝐵 )  | 
						
						
							| 23 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝐹 : 𝐵 ⟶ 𝐵  →  𝐹  Fn  𝐵 )  | 
						
						
							| 24 | 
							
								
							 | 
							fvelrnb | 
							⊢ ( 𝐹  Fn  𝐵  →  ( 𝑒  ∈  ran  𝐹  ↔  ∃ 𝑑  ∈  𝐵 ( 𝐹 ‘ 𝑑 )  =  𝑒 ) )  | 
						
						
							| 25 | 
							
								22 23 24
							 | 
							3syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑒  ∈  𝐵 )  →  ( 𝑒  ∈  ran  𝐹  ↔  ∃ 𝑑  ∈  𝐵 ( 𝐹 ‘ 𝑑 )  =  𝑒 ) )  | 
						
						
							| 26 | 
							
								21 25
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑒  ∈  𝐵 )  →  𝑒  ∈  ran  𝐹 )  | 
						
						
							| 27 | 
							
								16 26
							 | 
							eqelssd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  →  ran  𝐹  =  𝐵 )  |