Metamath Proof Explorer


Theorem cdleme50trn2

Description: Part of proof that F is a translation. Remove S hypotheses no longer needed from cdleme50trn2a . TODO: fix comment. (Contributed by NM, 10-Apr-2013)

Ref Expression
Hypotheses cdlemef50.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef50.l = ( le ‘ 𝐾 )
cdlemef50.j = ( join ‘ 𝐾 )
cdlemef50.m = ( meet ‘ 𝐾 )
cdlemef50.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef50.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef50.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef50.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs50.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemef50.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
Assertion cdleme50trn2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 cdlemef50.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef50.l = ( le ‘ 𝐾 )
3 cdlemef50.j = ( join ‘ 𝐾 )
4 cdlemef50.m = ( meet ‘ 𝐾 )
5 cdlemef50.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef50.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef50.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef50.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs50.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemef50.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
13 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
14 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → 𝑃𝑄 )
15 2 3 5 6 cdlemb2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑃𝑄 ) → ∃ 𝑒𝐴 ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) )
16 11 12 13 14 15 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ∃ 𝑒𝐴 ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) )
17 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) )
18 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → 𝑃𝑄 )
19 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) )
20 simp3rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → 𝑒𝐴 )
21 simprrl ( ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑒 𝑊 )
22 21 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → ¬ 𝑒 𝑊 )
23 20 22 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → ( 𝑒𝐴 ∧ ¬ 𝑒 𝑊 ) )
24 simp3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
25 simprrr ( ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) → ¬ 𝑒 ( 𝑃 𝑄 ) )
26 25 3ad2ant3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → ¬ 𝑒 ( 𝑃 𝑄 ) )
27 1 2 3 4 5 6 7 8 9 10 cdleme50trn2a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ ( 𝑒𝐴 ∧ ¬ 𝑒 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 )
28 17 18 19 23 24 26 27 syl132anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 )
29 28 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( ( 𝑅 ( 𝑃 𝑄 ) ∧ ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 ) ) )
30 29 exp4a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) → ( 𝑅 ( 𝑃 𝑄 ) → ( ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 ) ) ) )
31 30 3imp ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑒𝐴 ∧ ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 ) )
32 31 expd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑒𝐴 → ( ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 ) ) )
33 32 rexlimdv ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( ∃ 𝑒𝐴 ( ¬ 𝑒 𝑊 ∧ ¬ 𝑒 ( 𝑃 𝑄 ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 ) )
34 16 33 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( ( 𝑅 ( 𝐹𝑅 ) ) 𝑊 ) = 𝑈 )