Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
cdleme4.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
cdleme4.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
cdleme4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
cdleme4.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | ||
cdleme4.u | ⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) | ||
cdleme4.f | ⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) | ||
cdleme4.g | ⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) | ||
cdleme7.v | ⊢ 𝑉 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) | ||
Assertion | cdleme7a | ⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝑉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme4.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
2 | cdleme4.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
3 | cdleme4.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
4 | cdleme4.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
5 | cdleme4.h | ⊢ 𝐻 = ( LHyp ‘ 𝐾 ) | |
6 | cdleme4.u | ⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) | |
7 | cdleme4.f | ⊢ 𝐹 = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) | |
8 | cdleme4.g | ⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) | |
9 | cdleme7.v | ⊢ 𝑉 = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) | |
10 | 9 | oveq2i | ⊢ ( 𝐹 ∨ 𝑉 ) = ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
11 | 10 | oveq2i | ⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝑉 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
12 | 8 11 | eqtr4i | ⊢ 𝐺 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐹 ∨ 𝑉 ) ) |