Metamath Proof Explorer


Theorem cdleme7a

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)

Ref Expression
Hypotheses cdleme4.l = ( le ‘ 𝐾 )
cdleme4.j = ( join ‘ 𝐾 )
cdleme4.m = ( meet ‘ 𝐾 )
cdleme4.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme4.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme4.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme4.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
cdleme4.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
cdleme7.v 𝑉 = ( ( 𝑅 𝑆 ) 𝑊 )
Assertion cdleme7a 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cdleme4.l = ( le ‘ 𝐾 )
2 cdleme4.j = ( join ‘ 𝐾 )
3 cdleme4.m = ( meet ‘ 𝐾 )
4 cdleme4.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme4.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme4.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme4.f 𝐹 = ( ( 𝑆 𝑈 ) ( 𝑄 ( ( 𝑃 𝑆 ) 𝑊 ) ) )
8 cdleme4.g 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
9 cdleme7.v 𝑉 = ( ( 𝑅 𝑆 ) 𝑊 )
10 9 oveq2i ( 𝐹 𝑉 ) = ( 𝐹 ( ( 𝑅 𝑆 ) 𝑊 ) )
11 10 oveq2i ( ( 𝑃 𝑄 ) ( 𝐹 𝑉 ) ) = ( ( 𝑃 𝑄 ) ( 𝐹 ( ( 𝑅 𝑆 ) 𝑊 ) ) )
12 8 11 eqtr4i 𝐺 = ( ( 𝑃 𝑄 ) ( 𝐹 𝑉 ) )