Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdleme8.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdleme8.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdleme8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdleme8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdleme8.4 |
⊢ 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
7 |
6
|
oveq2i |
⊢ ( 𝑃 ∨ 𝐶 ) = ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) |
8 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
9 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
10 |
8
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝐾 ∈ Lat ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
12 |
11 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
13 |
9 12
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
14 |
11 4
|
atbase |
⊢ ( 𝑆 ∈ 𝐴 → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
15 |
14
|
3ad2ant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝑆 ∈ ( Base ‘ 𝐾 ) ) |
16 |
11 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
10 13 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) |
18 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝑊 ∈ 𝐻 ) |
19 |
11 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
20 |
18 19
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
21 |
11 1 2
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
22 |
10 13 15 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) |
23 |
11 1 2 3 4
|
atmod3i1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ 𝑃 ≤ ( 𝑃 ∨ 𝑆 ) ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
24 |
8 9 17 20 22 23
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ 𝑊 ) ) ) |
25 |
|
eqid |
⊢ ( 1. ‘ 𝐾 ) = ( 1. ‘ 𝐾 ) |
26 |
1 2 25 4 5
|
lhpjat2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
27 |
26
|
3adant3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑊 ) = ( 1. ‘ 𝐾 ) ) |
28 |
27
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 𝑃 ∨ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑆 ) ∧ ( 1. ‘ 𝐾 ) ) ) |
29 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
30 |
8 29
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → 𝐾 ∈ OL ) |
31 |
11 3 25
|
olm11 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑃 ∨ 𝑆 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑆 ) ) |
32 |
30 17 31
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( ( 𝑃 ∨ 𝑆 ) ∧ ( 1. ‘ 𝐾 ) ) = ( 𝑃 ∨ 𝑆 ) ) |
33 |
24 28 32
|
3eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( 𝑃 ∨ 𝑆 ) ) |
34 |
7 33
|
syl5eq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝐶 ) = ( 𝑃 ∨ 𝑆 ) ) |