Metamath Proof Explorer


Theorem cdleme8tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X represents t_1. In their notation, we prove p \/ t_1 = p \/ t. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme8t.l = ( le ‘ 𝐾 )
cdleme8t.j = ( join ‘ 𝐾 )
cdleme8t.m = ( meet ‘ 𝐾 )
cdleme8t.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme8t.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme8t.x 𝑋 = ( ( 𝑃 𝑇 ) 𝑊 )
Assertion cdleme8tN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑇𝐴 ) → ( 𝑃 𝑋 ) = ( 𝑃 𝑇 ) )

Proof

Step Hyp Ref Expression
1 cdleme8t.l = ( le ‘ 𝐾 )
2 cdleme8t.j = ( join ‘ 𝐾 )
3 cdleme8t.m = ( meet ‘ 𝐾 )
4 cdleme8t.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme8t.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme8t.x 𝑋 = ( ( 𝑃 𝑇 ) 𝑊 )
7 1 2 3 4 5 6 cdleme8 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑇𝐴 ) → ( 𝑃 𝑋 ) = ( 𝑃 𝑇 ) )