Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme8tN
Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114.
X represents t_1. In their notation, we prove p \/ t_1 = p
\/ t. (Contributed by NM , 8-Oct-2012)
(New usage is discouraged.)
Ref
Expression
Hypotheses
cdleme8t.l
⊢ ≤ = ( le ‘ 𝐾 )
cdleme8t.j
⊢ ∨ = ( join ‘ 𝐾 )
cdleme8t.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdleme8t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdleme8t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdleme8t.x
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 )
Assertion
cdleme8tN
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑋 ) = ( 𝑃 ∨ 𝑇 ) )
Proof
Step
Hyp
Ref
Expression
1
cdleme8t.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdleme8t.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdleme8t.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdleme8t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdleme8t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdleme8t.x
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 )
7
1 2 3 4 5 6
cdleme8
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑇 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑋 ) = ( 𝑃 ∨ 𝑇 ) )