| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme9.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme9.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme9.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme9.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme9.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme9.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme9.f | 
							⊢ 𝐹  =  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme9.c | 
							⊢ 𝐶  =  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							cdleme3d | 
							⊢ 𝐹  =  ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1i | 
							⊢ ( 𝐹  ∨  𝐶 )  =  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝐶 ) )  ∨  𝐶 )  | 
						
						
							| 11 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐾  ∈  HL )  | 
						
						
							| 12 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 15 | 
							
								11
							 | 
							hllatd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 17 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝑆  ∈  𝐴  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simp21l | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ∈  𝐴 )  | 
						
						
							| 20 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝑃  ∈  𝐴  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑄  ∈  𝐴 )  | 
						
						
							| 23 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝑄  ∈  𝐴  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑄  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 26 | 
							
								16 1 2
							 | 
							latnlej1l | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≠  𝑃 )  | 
						
						
							| 27 | 
							
								26
							 | 
							necomd | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≠  𝑆 )  | 
						
						
							| 28 | 
							
								15 18 21 24 25 27
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≠  𝑆 )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 8
							 | 
							cdleme9a | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  𝑃  ≠  𝑆 ) )  →  𝐶  ∈  𝐴 )  | 
						
						
							| 30 | 
							
								12 13 14 28 29
							 | 
							syl112anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ∈  𝐴 )  | 
						
						
							| 31 | 
							
								1 2 3 4 5 6 16
							 | 
							cdleme0aa | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 32 | 
							
								12 19 22 31
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑈  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 33 | 
							
								16 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑆  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 34 | 
							
								15 18 32 33
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑆  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 35 | 
							
								16 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝐶  ∈  𝐴 )  →  ( 𝑄  ∨  𝐶 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 36 | 
							
								11 22 30 35
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  𝐶 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 37 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝐶  ∈  𝐴 )  →  𝐶  ≤  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 38 | 
							
								11 22 30 37
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ≤  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 39 | 
							
								16 1 2 3 4
							 | 
							atmod4i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐶  ∈  𝐴  ∧  ( 𝑆  ∨  𝑈 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  𝐶 )  ∈  ( Base ‘ 𝐾 ) )  ∧  𝐶  ≤  ( 𝑄  ∨  𝐶 ) )  →  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝐶 ) )  ∨  𝐶 )  =  ( ( ( 𝑆  ∨  𝑈 )  ∨  𝐶 )  ∧  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 40 | 
							
								11 30 34 36 38 39
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝐶 ) )  ∨  𝐶 )  =  ( ( ( 𝑆  ∨  𝑈 )  ∨  𝐶 )  ∧  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 41 | 
							
								8
							 | 
							oveq2i | 
							⊢ ( 𝑆  ∨  𝐶 )  =  ( 𝑆  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) )  | 
						
						
							| 42 | 
							
								16 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 43 | 
							
								11 19 14 42
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simp1r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 45 | 
							
								16 5
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑊  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 47 | 
							
								1 2 4
							 | 
							hlatlej2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 48 | 
							
								11 19 14 47
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 49 | 
							
								16 1 2 3 4
							 | 
							atmod3i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑆  ≤  ( 𝑃  ∨  𝑆 ) )  →  ( 𝑆  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑆  ∨  𝑊 ) ) )  | 
						
						
							| 50 | 
							
								11 14 43 46 48 49
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑆  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑆  ∨  𝑊 ) ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simp23r | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑆  ≤  𝑊 )  | 
						
						
							| 52 | 
							
								
							 | 
							eqid | 
							⊢ ( 1. ‘ 𝐾 )  =  ( 1. ‘ 𝐾 )  | 
						
						
							| 53 | 
							
								1 2 52 4 5
							 | 
							lhpjat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  →  ( 𝑆  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 54 | 
							
								12 14 51 53
							 | 
							syl12anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑆  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 𝑆  ∨  𝑊 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 57 | 
							
								11 56
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐾  ∈  OL )  | 
						
						
							| 58 | 
							
								16 3 52
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 59 | 
							
								57 43 58
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 60 | 
							
								50 55 59
							 | 
							3eqtrrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑆 )  =  ( 𝑆  ∨  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 61 | 
							
								41 60
							 | 
							eqtr4id | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑆  ∨  𝐶 )  =  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑆  ∨  𝐶 )  ∨  𝑈 )  =  ( ( 𝑃  ∨  𝑆 )  ∨  𝑈 ) )  | 
						
						
							| 63 | 
							
								16 4
							 | 
							atbase | 
							⊢ ( 𝐶  ∈  𝐴  →  𝐶  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 64 | 
							
								30 63
							 | 
							syl | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 65 | 
							
								16 2
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑆  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  𝐶  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑆  ∨  𝑈 )  ∨  𝐶 )  =  ( ( 𝑆  ∨  𝐶 )  ∨  𝑈 ) )  | 
						
						
							| 66 | 
							
								15 18 32 64 65
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑆  ∨  𝑈 )  ∨  𝐶 )  =  ( ( 𝑆  ∨  𝐶 )  ∨  𝑈 ) )  | 
						
						
							| 67 | 
							
								2 4
							 | 
							hlatj32 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  𝑆  ∈  𝐴  ∧  𝑄  ∈  𝐴 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∨  𝑄 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑆 ) )  | 
						
						
							| 68 | 
							
								11 19 14 22 67
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∨  𝑄 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑆 ) )  | 
						
						
							| 69 | 
							
								16 2
							 | 
							latjcom | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∨  𝑄 ) )  | 
						
						
							| 70 | 
							
								15 24 43 69
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∨  𝑄 ) )  | 
						
						
							| 71 | 
							
								6
							 | 
							oveq2i | 
							⊢ ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  | 
						
						
							| 72 | 
							
								16 2 4
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 73 | 
							
								11 19 22 72
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 74 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 75 | 
							
								11 19 22 74
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 76 | 
							
								16 1 2 3 4
							 | 
							atmod3i1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∈  𝐴  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  ∧  𝑃  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑃  ∨  𝑊 ) ) )  | 
						
						
							| 77 | 
							
								11 19 73 46 75 76
							 | 
							syl131anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑃  ∨  𝑊 ) ) )  | 
						
						
							| 78 | 
							
								1 2 52 4 5
							 | 
							lhpjat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  →  ( 𝑃  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 79 | 
							
								12 13 78
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑊 )  =  ( 1. ‘ 𝐾 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							oveq2d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝑃  ∨  𝑊 ) )  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) ) )  | 
						
						
							| 81 | 
							
								16 3 52
							 | 
							olm11 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 82 | 
							
								57 73 81
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∧  ( 1. ‘ 𝐾 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 83 | 
							
								77 80 82
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 ) )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 84 | 
							
								71 83
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∨  𝑈 )  =  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑈 )  ∨  𝑆 )  =  ( ( 𝑃  ∨  𝑄 )  ∨  𝑆 ) )  | 
						
						
							| 86 | 
							
								68 70 85
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑃  ∨  𝑈 )  ∨  𝑆 ) )  | 
						
						
							| 87 | 
							
								16 2
							 | 
							latj32 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∈  ( Base ‘ 𝐾 )  ∧  𝑈  ∈  ( Base ‘ 𝐾 )  ∧  𝑆  ∈  ( Base ‘ 𝐾 ) ) )  →  ( ( 𝑃  ∨  𝑈 )  ∨  𝑆 )  =  ( ( 𝑃  ∨  𝑆 )  ∨  𝑈 ) )  | 
						
						
							| 88 | 
							
								15 21 32 18 87
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑈 )  ∨  𝑆 )  =  ( ( 𝑃  ∨  𝑆 )  ∨  𝑈 ) )  | 
						
						
							| 89 | 
							
								86 88
							 | 
							eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  =  ( ( 𝑃  ∨  𝑆 )  ∨  𝑈 ) )  | 
						
						
							| 90 | 
							
								62 66 89
							 | 
							3eqtr4d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑆  ∨  𝑈 )  ∨  𝐶 )  =  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ( 𝑆  ∨  𝑈 )  ∨  𝐶 )  ∧  ( 𝑄  ∨  𝐶 ) )  =  ( ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 92 | 
							
								16 1 3
							 | 
							latmle1 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑊  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 93 | 
							
								15 43 46 92
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑃  ∨  𝑆 )  ∧  𝑊 )  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 94 | 
							
								8 93
							 | 
							eqbrtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝐶  ≤  ( 𝑃  ∨  𝑆 ) )  | 
						
						
							| 95 | 
							
								16 1 2
							 | 
							latjlej2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝐶  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  𝑄  ∈  ( Base ‘ 𝐾 ) ) )  →  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  →  ( 𝑄  ∨  𝐶 )  ≤  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) ) ) )  | 
						
						
							| 96 | 
							
								15 64 43 24 95
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐶  ≤  ( 𝑃  ∨  𝑆 )  →  ( 𝑄  ∨  𝐶 )  ≤  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) ) ) )  | 
						
						
							| 97 | 
							
								94 96
							 | 
							mpd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  𝐶 )  ≤  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) ) )  | 
						
						
							| 98 | 
							
								16 2
							 | 
							latjcl | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  𝑄  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑃  ∨  𝑆 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 99 | 
							
								15 24 43 98
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 100 | 
							
								16 1 3
							 | 
							latleeqm2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝐶 )  ∈  ( Base ‘ 𝐾 )  ∧  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑄  ∨  𝐶 )  ≤  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ↔  ( ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑄  ∨  𝐶 ) )  =  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 101 | 
							
								15 36 99 100
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑄  ∨  𝐶 )  ≤  ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ↔  ( ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑄  ∨  𝐶 ) )  =  ( 𝑄  ∨  𝐶 ) ) )  | 
						
						
							| 102 | 
							
								97 101
							 | 
							mpbid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑄  ∨  ( 𝑃  ∨  𝑆 ) )  ∧  ( 𝑄  ∨  𝐶 ) )  =  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 103 | 
							
								40 91 102
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ( 𝑆  ∨  𝑈 )  ∧  ( 𝑄  ∨  𝐶 ) )  ∨  𝐶 )  =  ( 𝑄  ∨  𝐶 ) )  | 
						
						
							| 104 | 
							
								10 103
							 | 
							eqtrid | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  𝑄  ∈  𝐴  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐹  ∨  𝐶 )  =  ( 𝑄  ∨  𝐶 ) )  |