Metamath Proof Explorer


Theorem cdleme9b

Description: Utility lemma for Lemma E in Crawley p. 113. (Contributed by NM, 9-Oct-2012)

Ref Expression
Hypotheses cdleme9b.b 𝐵 = ( Base ‘ 𝐾 )
cdleme9b.j = ( join ‘ 𝐾 )
cdleme9b.m = ( meet ‘ 𝐾 )
cdleme9b.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme9b.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme9b.c 𝐶 = ( ( 𝑃 𝑆 ) 𝑊 )
Assertion cdleme9b ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → 𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 cdleme9b.b 𝐵 = ( Base ‘ 𝐾 )
2 cdleme9b.j = ( join ‘ 𝐾 )
3 cdleme9b.m = ( meet ‘ 𝐾 )
4 cdleme9b.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme9b.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme9b.c 𝐶 = ( ( 𝑃 𝑆 ) 𝑊 )
7 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
8 7 adantr ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → 𝐾 ∈ Lat )
9 1 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴 ) → ( 𝑃 𝑆 ) ∈ 𝐵 )
10 9 3adant3r3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → ( 𝑃 𝑆 ) ∈ 𝐵 )
11 simpr3 ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → 𝑊𝐻 )
12 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
13 11 12 syl ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → 𝑊𝐵 )
14 1 3 latmcl ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑆 ) ∈ 𝐵𝑊𝐵 ) → ( ( 𝑃 𝑆 ) 𝑊 ) ∈ 𝐵 )
15 8 10 13 14 syl3anc ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → ( ( 𝑃 𝑆 ) 𝑊 ) ∈ 𝐵 )
16 6 15 eqeltrid ( ( 𝐾 ∈ HL ∧ ( 𝑃𝐴𝑆𝐴𝑊𝐻 ) ) → 𝐶𝐵 )