| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme9b.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
cdleme9b.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
cdleme9b.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 4 |
|
cdleme9b.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
cdleme9b.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
cdleme9b.c |
⊢ 𝐶 = ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) |
| 7 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) → 𝐾 ∈ Lat ) |
| 9 |
1 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑆 ) ∈ 𝐵 ) |
| 10 |
9
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) → ( 𝑃 ∨ 𝑆 ) ∈ 𝐵 ) |
| 11 |
|
simpr3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) → 𝑊 ∈ 𝐻 ) |
| 12 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) → 𝑊 ∈ 𝐵 ) |
| 14 |
1 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑆 ) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐵 ) |
| 15 |
8 10 13 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) → ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ∈ 𝐵 ) |
| 16 |
6 15
|
eqeltrid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻 ) ) → 𝐶 ∈ 𝐵 ) |