Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme9tN
Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114.
X and F represent t_1 and f(t) respectively. In their notation,
we prove f(t) \/ t_1 = q \/ t_1. (Contributed by NM , 8-Oct-2012) (New usage is discouraged.)
Ref
Expression
Hypotheses
cdleme9t.l
⊢ ≤ = ( le ‘ 𝐾 )
cdleme9t.j
⊢ ∨ = ( join ‘ 𝐾 )
cdleme9t.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdleme9t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdleme9t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdleme9t.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
cdleme9t.g
⊢ 𝐹 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) )
cdleme9t.x
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 )
Assertion
cdleme9tN
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ∨ 𝑋 ) = ( 𝑄 ∨ 𝑋 ) )
Proof
Step
Hyp
Ref
Expression
1
cdleme9t.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdleme9t.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdleme9t.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdleme9t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdleme9t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdleme9t.u
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 )
7
cdleme9t.g
⊢ 𝐹 = ( ( 𝑇 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 ) ) )
8
cdleme9t.x
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 )
9
1 2 3 4 5 6 7 8
cdleme9
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ∧ ( 𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊 ) ) ∧ ¬ 𝑇 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐹 ∨ 𝑋 ) = ( 𝑄 ∨ 𝑋 ) )