Metamath Proof Explorer


Theorem cdleme9tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X and F represent t_1 and f(t) respectively. In their notation, we prove f(t) \/ t_1 = q \/ t_1. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme9t.l = ( le ‘ 𝐾 )
cdleme9t.j = ( join ‘ 𝐾 )
cdleme9t.m = ( meet ‘ 𝐾 )
cdleme9t.a 𝐴 = ( Atoms ‘ 𝐾 )
cdleme9t.h 𝐻 = ( LHyp ‘ 𝐾 )
cdleme9t.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdleme9t.g 𝐹 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
cdleme9t.x 𝑋 = ( ( 𝑃 𝑇 ) 𝑊 )
Assertion cdleme9tN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ) → ( 𝐹 𝑋 ) = ( 𝑄 𝑋 ) )

Proof

Step Hyp Ref Expression
1 cdleme9t.l = ( le ‘ 𝐾 )
2 cdleme9t.j = ( join ‘ 𝐾 )
3 cdleme9t.m = ( meet ‘ 𝐾 )
4 cdleme9t.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdleme9t.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdleme9t.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
7 cdleme9t.g 𝐹 = ( ( 𝑇 𝑈 ) ( 𝑄 ( ( 𝑃 𝑇 ) 𝑊 ) ) )
8 cdleme9t.x 𝑋 = ( ( 𝑃 𝑇 ) 𝑊 )
9 1 2 3 4 5 6 7 8 cdleme9 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ 𝑄𝐴 ∧ ( 𝑇𝐴 ∧ ¬ 𝑇 𝑊 ) ) ∧ ¬ 𝑇 ( 𝑃 𝑄 ) ) → ( 𝐹 𝑋 ) = ( 𝑄 𝑋 ) )