Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme9taN
Metamath Proof Explorer
Description: Part of proof of Lemma E in Crawley p. 113. X represents t_1,
which we prove is an atom. (Contributed by NM , 8-Oct-2012)
(New usage is discouraged.)
Ref
Expression
Hypotheses
cdleme8t.l
⊢ ≤ = ( le ‘ 𝐾 )
cdleme8t.j
⊢ ∨ = ( join ‘ 𝐾 )
cdleme8t.m
⊢ ∧ = ( meet ‘ 𝐾 )
cdleme8t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
cdleme8t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
cdleme8t.x
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 )
Assertion
cdleme9taN
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑇 ) ) → 𝑋 ∈ 𝐴 )
Proof
Step
Hyp
Ref
Expression
1
cdleme8t.l
⊢ ≤ = ( le ‘ 𝐾 )
2
cdleme8t.j
⊢ ∨ = ( join ‘ 𝐾 )
3
cdleme8t.m
⊢ ∧ = ( meet ‘ 𝐾 )
4
cdleme8t.a
⊢ 𝐴 = ( Atoms ‘ 𝐾 )
5
cdleme8t.h
⊢ 𝐻 = ( LHyp ‘ 𝐾 )
6
cdleme8t.x
⊢ 𝑋 = ( ( 𝑃 ∨ 𝑇 ) ∧ 𝑊 )
7
1 2 3 4 5 6
cdleme9a
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑇 ) ) → 𝑋 ∈ 𝐴 )