Metamath Proof Explorer


Theorem cdlemeda

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. D represents s_2. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdlemeda.l = ( le ‘ 𝐾 )
cdlemeda.j = ( join ‘ 𝐾 )
cdlemeda.m = ( meet ‘ 𝐾 )
cdlemeda.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemeda.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemeda.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
Assertion cdlemeda ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐷𝐴 )

Proof

Step Hyp Ref Expression
1 cdlemeda.l = ( le ‘ 𝐾 )
2 cdlemeda.j = ( join ‘ 𝐾 )
3 cdlemeda.m = ( meet ‘ 𝐾 )
4 cdlemeda.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemeda.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemeda.d 𝐷 = ( ( 𝑅 𝑆 ) 𝑊 )
7 simp1l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐾 ∈ HL )
8 simp31 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑅𝐴 )
9 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝐴 )
10 2 4 hlatjcom ( ( 𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴 ) → ( 𝑅 𝑆 ) = ( 𝑆 𝑅 ) )
11 7 8 9 10 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( 𝑅 𝑆 ) = ( 𝑆 𝑅 ) )
12 11 oveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑊 ) = ( ( 𝑆 𝑅 ) 𝑊 ) )
13 simp1r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑊𝐻 )
14 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 𝑊 )
15 simp32 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑅 ( 𝑃 𝑄 ) )
16 simp33 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ¬ 𝑆 ( 𝑃 𝑄 ) )
17 1 2 4 5 cdlemesner ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝑅 )
18 7 8 9 15 16 17 syl122anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝑅 )
19 1 2 3 4 5 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑆𝑅 ) ) → ( ( 𝑆 𝑅 ) 𝑊 ) ∈ 𝐴 )
20 7 13 9 14 8 18 19 syl222anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑆 𝑅 ) 𝑊 ) ∈ 𝐴 )
21 12 20 eqeltrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → ( ( 𝑅 𝑆 ) 𝑊 ) ∈ 𝐴 )
22 6 21 eqeltrid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝑅𝐴𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝐷𝐴 )