Metamath Proof Explorer


Theorem cdlemefr29exN

Description: Lemma for cdlemefs29bpre1N . (Compare cdleme25a .) TODO: FIX COMMENT. TODO: IS THIS NEEDED? (Contributed by NM, 28-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefr29.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefr29.l = ( le ‘ 𝐾 )
cdlemefr29.j = ( join ‘ 𝐾 )
cdlemefr29.m = ( meet ‘ 𝐾 )
cdlemefr29.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefr29.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion cdlemefr29exN ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ∃ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 cdlemefr29.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefr29.l = ( le ‘ 𝐾 )
3 cdlemefr29.j = ( join ‘ 𝐾 )
4 cdlemefr29.m = ( meet ‘ 𝐾 )
5 cdlemefr29.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefr29.h 𝐻 = ( LHyp ‘ 𝐾 )
7 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
9 1 2 3 4 5 6 lhpmcvr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) → ∃ 𝑠𝐴 ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) )
10 7 8 9 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ∃ 𝑠𝐴 ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) )
11 nfv 𝑠 ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
12 nfv 𝑠 ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
13 nfra1 𝑠𝑠𝐴 𝐶𝐵
14 11 12 13 nf3an 𝑠 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 )
15 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → 𝐾 ∈ HL )
16 15 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝐾 ∈ HL )
17 16 hllatd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝐾 ∈ Lat )
18 simpl3 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ∀ 𝑠𝐴 𝐶𝐵 )
19 simprl ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝑠𝐴 )
20 rsp ( ∀ 𝑠𝐴 𝐶𝐵 → ( 𝑠𝐴𝐶𝐵 ) )
21 18 19 20 sylc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → 𝐶𝐵 )
22 15 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → 𝐾 ∈ Lat )
23 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → 𝑋𝐵 )
24 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → 𝑊𝐻 )
25 1 6 lhpbase ( 𝑊𝐻𝑊𝐵 )
26 24 25 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → 𝑊𝐵 )
27 1 4 latmcl ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
28 22 23 26 27 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
29 28 adantr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝑋 𝑊 ) ∈ 𝐵 )
30 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝐶𝐵 ∧ ( 𝑋 𝑊 ) ∈ 𝐵 ) → ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
31 17 21 29 30 syl3anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ ( 𝑠𝐴 ∧ ¬ 𝑠 𝑊 ) ) → ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 )
32 31 expr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ 𝑠𝐴 ) → ( ¬ 𝑠 𝑊 → ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) )
33 32 adantrd ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ 𝑠𝐴 ) → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) )
34 33 ancld ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) ∧ 𝑠𝐴 ) → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) ) )
35 34 ex ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ( 𝑠𝐴 → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) ) ) )
36 14 35 reximdai ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ( ∃ 𝑠𝐴 ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) → ∃ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) ) )
37 10 36 mpd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ∀ 𝑠𝐴 𝐶𝐵 ) → ∃ 𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑋 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ( 𝑋 𝑊 ) ) ∈ 𝐵 ) )