Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefr29.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemefr29.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemefr29.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemefr29.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemefr29.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemefr29.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
9 |
1 2 3 4 5 6
|
lhpmcvr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
10 |
7 8 9
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ) |
11 |
|
nfv |
⊢ Ⅎ 𝑠 ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
12 |
|
nfv |
⊢ Ⅎ 𝑠 ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) |
13 |
|
nfra1 |
⊢ Ⅎ 𝑠 ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 |
14 |
11 12 13
|
nf3an |
⊢ Ⅎ 𝑠 ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
15 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → 𝐾 ∈ HL ) |
16 |
15
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
17 |
16
|
hllatd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
18 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) |
19 |
|
simprl |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝑠 ∈ 𝐴 ) |
20 |
|
rsp |
⊢ ( ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 → ( 𝑠 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
21 |
18 19 20
|
sylc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → 𝐶 ∈ 𝐵 ) |
22 |
15
|
hllatd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → 𝐾 ∈ Lat ) |
23 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
24 |
|
simp11r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → 𝑊 ∈ 𝐻 ) |
25 |
1 6
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
26 |
24 25
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → 𝑊 ∈ 𝐵 ) |
27 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
28 |
22 23 26 27
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
29 |
28
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) |
30 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝐶 ∈ 𝐵 ∧ ( 𝑋 ∧ 𝑊 ) ∈ 𝐵 ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) |
31 |
17 21 29 30
|
syl3anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ ( 𝑠 ∈ 𝐴 ∧ ¬ 𝑠 ≤ 𝑊 ) ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) |
32 |
31
|
expr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ¬ 𝑠 ≤ 𝑊 → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) |
33 |
32
|
adantrd |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) |
34 |
33
|
ancld |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) ) |
35 |
34
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( 𝑠 ∈ 𝐴 → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) ) ) |
36 |
14 35
|
reximdai |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝐴 ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) → ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) ) |
37 |
10 36
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊 ) ) ∧ ∀ 𝑠 ∈ 𝐴 𝐶 ∈ 𝐵 ) → ∃ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑋 ∧ 𝑊 ) ) = 𝑋 ) ∧ ( 𝐶 ∨ ( 𝑋 ∧ 𝑊 ) ) ∈ 𝐵 ) ) |