| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemefrs27.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemefrs27.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemefrs27.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemefrs27.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemefrs27.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemefrs27.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemefrs27.eq | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemefrs27.nb | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝑁  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ral | 
							⊢ ( ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ∀ 𝑠 ( 𝑠  ∈  𝐴  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  ↔  ( 𝑠  ∈  𝐴  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imbi1i | 
							⊢ ( ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ( ( 𝑠  ∈  𝐴  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( 𝑠  ∈  𝐴  ∧  ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ( 𝑠  ∈  𝐴  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3bitr3ri | 
							⊢ ( ( 𝑠  ∈  𝐴  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  ↔  ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl11 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl2r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 )  | 
						
						
							| 18 | 
							
								2 4 17 5 6
							 | 
							lhpmat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( 𝑅  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								15 16 18
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑅  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  ( 𝑠  ∨  ( 0. ‘ 𝐾 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝐾  ∈  HL )  | 
						
						
							| 22 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝐾  ∈  OL )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝐾  ∈  OL )  | 
						
						
							| 25 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝑠  ∈  𝐴 )  | 
						
						
							| 26 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑠  ∈  𝐴  →  𝑠  ∈  𝐵 )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝑠  ∈  𝐵 )  | 
						
						
							| 28 | 
							
								1 3 17
							 | 
							olj01 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑠  ∈  𝐵 )  →  ( 𝑠  ∨  ( 0. ‘ 𝐾 ) )  =  𝑠 )  | 
						
						
							| 29 | 
							
								24 27 28
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑠  ∨  ( 0. ‘ 𝐾 ) )  =  𝑠 )  | 
						
						
							| 30 | 
							
								20 29
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑠 )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqeq1d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  ↔  𝑠  =  𝑅 ) )  | 
						
						
							| 32 | 
							
								19
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) )  =  ( 𝑁  ∨  ( 0. ‘ 𝐾 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpl2l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 35 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  | 
						
						
							| 36 | 
							
								33 34 25 35 8
							 | 
							syl112anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝑁  ∈  𝐵 )  | 
						
						
							| 37 | 
							
								1 3 17
							 | 
							olj01 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑁  ∈  𝐵 )  →  ( 𝑁  ∨  ( 0. ‘ 𝐾 ) )  =  𝑁 )  | 
						
						
							| 38 | 
							
								24 36 37
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑁  ∨  ( 0. ‘ 𝐾 ) )  =  𝑁 )  | 
						
						
							| 39 | 
							
								32 38
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑁 )  | 
						
						
							| 40 | 
							
								39
							 | 
							eqeq2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( 𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) )  ↔  𝑧  =  𝑁 ) )  | 
						
						
							| 41 | 
							
								31 40
							 | 
							imbi12d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  ( ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ( 𝑠  =  𝑅  →  𝑧  =  𝑁 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							pm5.74da | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  ↔  ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( 𝑠  =  𝑅  →  𝑧  =  𝑁 ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							impexp | 
							⊢ ( ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  𝑠  =  𝑅 )  →  𝑧  =  𝑁 )  ↔  ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( 𝑠  =  𝑅  →  𝑧  =  𝑁 ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simp2rl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 45 | 
							
								
							 | 
							simp2rr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 46 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝜓 )  | 
						
						
							| 47 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝑠  ∈  𝐴  ↔  𝑅  ∈  𝐴 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝑠  ≤  𝑊  ↔  𝑅  ≤  𝑊 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							notbid | 
							⊢ ( 𝑠  =  𝑅  →  ( ¬  𝑠  ≤  𝑊  ↔  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 50 | 
							
								49 7
							 | 
							anbi12d | 
							⊢ ( 𝑠  =  𝑅  →  ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ↔  ( ¬  𝑅  ≤  𝑊  ∧  𝜓 ) ) )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							anbi12d | 
							⊢ ( 𝑠  =  𝑅  →  ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ↔  ( 𝑅  ∈  𝐴  ∧  ( ¬  𝑅  ≤  𝑊  ∧  𝜓 ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							biimprcd | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  ( ¬  𝑅  ≤  𝑊  ∧  𝜓 ) )  →  ( 𝑠  =  𝑅  →  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) ) )  | 
						
						
							| 53 | 
							
								44 45 46 52
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( 𝑠  =  𝑅  →  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							pm4.71rd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( 𝑠  =  𝑅  ↔  ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  𝑠  =  𝑅 ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							imbi1d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ( 𝑠  =  𝑅  →  𝑧  =  𝑁 )  ↔  ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  𝑠  =  𝑅 )  →  𝑧  =  𝑁 ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							eqcom | 
							⊢ ( 𝑧  =  𝑁  ↔  𝑁  =  𝑧 )  | 
						
						
							| 57 | 
							
								56
							 | 
							imbi2i | 
							⊢ ( ( 𝑠  =  𝑅  →  𝑧  =  𝑁 )  ↔  ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							bitr3di | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  ∧  𝑠  =  𝑅 )  →  𝑧  =  𝑁 )  ↔  ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) ) )  | 
						
						
							| 59 | 
							
								43 58
							 | 
							bitr3id | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( 𝑠  =  𝑅  →  𝑧  =  𝑁 ) )  ↔  ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) ) )  | 
						
						
							| 60 | 
							
								42 59
							 | 
							bitrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ( ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  ↔  ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) ) )  | 
						
						
							| 61 | 
							
								14 60
							 | 
							bitrid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ( 𝑠  ∈  𝐴  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  ↔  ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							albidv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∀ 𝑠 ( 𝑠  ∈  𝐴  →  ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  ↔  ∀ 𝑠 ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) ) )  | 
						
						
							| 63 | 
							
								9 62
							 | 
							bitrid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ∀ 𝑠 ( 𝑠  =  𝑅  →  𝑁  =  𝑧 ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑠 𝑧  | 
						
						
							| 65 | 
							
								64
							 | 
							csbiebg | 
							⊢ ( 𝑅  ∈  𝐴  →  ( ∀ 𝑠 ( 𝑠  =  𝑅  →  𝑁  =  𝑧 )  ↔  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  𝑧 ) )  | 
						
						
							| 66 | 
							
								44 65
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∀ 𝑠 ( 𝑠  =  𝑅  →  𝑁  =  𝑧 )  ↔  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  𝑧 ) )  | 
						
						
							| 67 | 
							
								
							 | 
							eqcom | 
							⊢ ( ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  𝑧  ↔  𝑧  =  ⦋ 𝑅  /  𝑠 ⦌ 𝑁 )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							bitrdi | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∀ 𝑠 ( 𝑠  =  𝑅  →  𝑁  =  𝑧 )  ↔  𝑧  =  ⦋ 𝑅  /  𝑠 ⦌ 𝑁 ) )  | 
						
						
							| 69 | 
							
								63 68
							 | 
							bitrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  𝑧  =  ⦋ 𝑅  /  𝑠 ⦌ 𝑁 ) )  |