| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemefrs27.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemefrs27.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemefrs27.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemefrs27.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemefrs27.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemefrs27.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemefrs27.eq | 
							⊢ ( 𝑠  =  𝑅  →  ( 𝜑  ↔  𝜓 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemefrs27.nb | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄  ∧  ( 𝑠  ∈  𝐴  ∧  ( ¬  𝑠  ≤  𝑊  ∧  𝜑 ) ) )  →  𝑁  ∈  𝐵 )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefrs27.rnb | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ∈  𝐵 )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							cdlemefrs29bpre1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ∃ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp2rl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑅  ∈  𝐴  →  𝑅  ∈  𝐵 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝑅  ∈  𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							simp2rr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6
							 | 
							lhpmcvr2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐵  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) )  | 
						
						
							| 17 | 
							
								11 14 15 16
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  𝜓 )  | 
						
						
							| 19 | 
							
								7
							 | 
							pm5.32ri | 
							⊢ ( ( 𝜑  ∧  𝑠  =  𝑅 )  ↔  ( 𝜓  ∧  𝑠  =  𝑅 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							baibr | 
							⊢ ( 𝜓  →  ( 𝑠  =  𝑅  ↔  ( 𝜑  ∧  𝑠  =  𝑅 ) ) )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝑠  =  𝑅  ↔  ( 𝜑  ∧  𝑠  =  𝑅 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							simp2r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							eqid | 
							⊢ ( 0. ‘ 𝐾 )  =  ( 0. ‘ 𝐾 )  | 
						
						
							| 24 | 
							
								2 4 23 5 6
							 | 
							lhpmat | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( 𝑅  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 25 | 
							
								11 22 24
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( 𝑅  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝑅  ∧  𝑊 )  =  ( 0. ‘ 𝐾 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							oveq2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  ( 𝑠  ∨  ( 0. ‘ 𝐾 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝐾  ∈  HL )  | 
						
						
							| 29 | 
							
								
							 | 
							hlol | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  OL )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  𝐾  ∈  OL )  | 
						
						
							| 31 | 
							
								1 5
							 | 
							atbase | 
							⊢ ( 𝑠  ∈  𝐴  →  𝑠  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								1 3 23
							 | 
							olj01 | 
							⊢ ( ( 𝐾  ∈  OL  ∧  𝑠  ∈  𝐵 )  →  ( 𝑠  ∨  ( 0. ‘ 𝐾 ) )  =  𝑠 )  | 
						
						
							| 33 | 
							
								30 31 32
							 | 
							syl2an | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝑠  ∨  ( 0. ‘ 𝐾 ) )  =  𝑠 )  | 
						
						
							| 34 | 
							
								27 33
							 | 
							eqtrd | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑠 )  | 
						
						
							| 35 | 
							
								34
							 | 
							eqeq1d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  ↔  𝑠  =  𝑅 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							anbi2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝜑  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  ↔  ( 𝜑  ∧  𝑠  =  𝑅 ) ) )  | 
						
						
							| 37 | 
							
								21 35 36
							 | 
							3bitr4d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅  ↔  ( 𝜑  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							anbi2d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  ↔  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝜑  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							anass | 
							⊢ ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  ↔  ( ¬  𝑠  ≤  𝑊  ∧  ( 𝜑  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) ) )  | 
						
						
							| 40 | 
							
								38 39
							 | 
							bitr4di | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  ∧  𝑠  ∈  𝐴 )  →  ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  ↔  ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							rexbidva | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∃ 𝑠  ∈  𝐴 ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  ↔  ∃ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) ) )  | 
						
						
							| 42 | 
							
								17 41
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ∃ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 ) )  | 
						
						
							| 43 | 
							
								
							 | 
							reusv1 | 
							⊢ ( ∃ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  ( ∃! 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ∃ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ( ∃! 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) )  ↔  ∃ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) ) )  | 
						
						
							| 45 | 
							
								10 44
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝜓 )  →  ∃! 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ( ¬  𝑠  ≤  𝑊  ∧  𝜑 )  ∧  ( 𝑠  ∨  ( 𝑅  ∧  𝑊 ) )  =  𝑅 )  →  𝑧  =  ( 𝑁  ∨  ( 𝑅  ∧  𝑊 ) ) ) )  |