Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefrs27.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemefrs27.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemefrs27.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemefrs27.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemefrs27.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemefrs27.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemefrs27.eq |
⊢ ( 𝑠 = 𝑅 → ( 𝜑 ↔ 𝜓 ) ) |
8 |
|
cdlemefrs27.nb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝑠 ∈ 𝐴 ∧ ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ) ) → 𝑁 ∈ 𝐵 ) |
9 |
|
cdlemefrs27.rnb |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ∈ 𝐵 ) |
10 |
|
cdleme29frs.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( 𝑁 ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
11 |
|
simp2rl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝑅 ∈ 𝐴 ) |
12 |
1 5
|
atbase |
⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵 ) |
13 |
|
eqid |
⊢ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
14 |
10 13
|
cdleme31so |
⊢ ( 𝑅 ∈ 𝐵 → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
15 |
11 12 14
|
3syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
16 |
|
ssidd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → 𝐵 ⊆ 𝐵 ) |
17 |
|
simpll |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → ¬ 𝑠 ≤ 𝑊 ) |
18 |
|
simpr |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) |
19 |
17 18
|
jca |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) |
20 |
19
|
imim1i |
⊢ ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
21 |
20
|
ralimi |
⊢ ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) → ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
22 |
21
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) → ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
23 |
22
|
a1i |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) → ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
24 |
1 2 3 4 5 6 7 8 9
|
cdlemefrs29bpre1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
25 |
|
simpl11 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
26 |
|
simpl2r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) |
27 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → 𝜓 ) |
28 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → 𝑠 ∈ 𝐴 ) |
29 |
1 2 3 4 5 6 7
|
cdlemefrs29pre00 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
30 |
25 26 27 28 29
|
syl31anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
31 |
30
|
imbi1d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
32 |
31
|
ralbidva |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
33 |
32
|
rexbidv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
34 |
24 33
|
mpbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
35 |
1 2 3 4 5 6 7 8 9
|
cdlemefrs29cpre1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ∃! 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) |
36 |
|
riotass2 |
⊢ ( ( ( 𝐵 ⊆ 𝐵 ∧ ∀ 𝑧 ∈ 𝐵 ( ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) → ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) ∧ ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ∧ ∃! 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) → ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
37 |
16 23 34 35 36
|
syl22anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) ) |
38 |
1 2 3 4 5 6 7 8
|
cdlemefrs29bpre0 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) ∧ 𝑧 ∈ 𝐵 ) → ( ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ↔ 𝑧 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) ) |
40 |
9 39
|
riota5 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝜑 ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) → 𝑧 = ( 𝑁 ∨ ( 𝑅 ∧ 𝑊 ) ) ) ) = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |
41 |
15 37 40
|
3eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ) ∧ 𝜓 ) → ⦋ 𝑅 / 𝑥 ⦌ 𝑂 = ⦋ 𝑅 / 𝑠 ⦌ 𝑁 ) |