Metamath Proof Explorer
Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using
lhpmat . (Contributed by NM, 27-Mar-2013)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
cdlemefs29.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
|
|
cdlemefs29.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
|
|
cdlemefs29.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
|
|
cdlemefs29.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
|
|
cdlemefs29.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
|
|
cdlemefs29.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
|
Assertion |
cdlemefs29pre00N |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefs29.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemefs29.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemefs29.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemefs29.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemefs29.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemefs29.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
breq1 |
⊢ ( 𝑠 = 𝑅 → ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ↔ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ) |
8 |
1 2 3 4 5 6 7
|
cdlemefrs29pre00 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑠 ∈ 𝐴 ) → ( ( ( ¬ 𝑠 ≤ 𝑊 ∧ 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) ) ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑅 ∧ 𝑊 ) ) = 𝑅 ) ) ) |