Metamath Proof Explorer


Theorem cdlemefs29pre00N

Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat . (Contributed by NM, 27-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefs29.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefs29.l = ( le ‘ 𝐾 )
cdlemefs29.j = ( join ‘ 𝐾 )
cdlemefs29.m = ( meet ‘ 𝐾 )
cdlemefs29.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefs29.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion cdlemefs29pre00N ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊𝑠 ( 𝑃 𝑄 ) ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemefs29.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefs29.l = ( le ‘ 𝐾 )
3 cdlemefs29.j = ( join ‘ 𝐾 )
4 cdlemefs29.m = ( meet ‘ 𝐾 )
5 cdlemefs29.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefs29.h 𝐻 = ( LHyp ‘ 𝐾 )
7 breq1 ( 𝑠 = 𝑅 → ( 𝑠 ( 𝑃 𝑄 ) ↔ 𝑅 ( 𝑃 𝑄 ) ) )
8 1 2 3 4 5 6 7 cdlemefrs29pre00 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ∧ 𝑅 ( 𝑃 𝑄 ) ) ∧ 𝑠𝐴 ) → ( ( ( ¬ 𝑠 𝑊𝑠 ( 𝑃 𝑄 ) ) ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ↔ ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑅 𝑊 ) ) = 𝑅 ) ) )