| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemefs32.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemefs32.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemefs32.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemefs32.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemefs32.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemefs32.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemefs32.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemefs32.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs32.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemefs32.i | 
							⊢ 𝐼  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdlemefs32.n | 
							⊢ 𝑁  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  𝐼 ,  𝐶 )  | 
						
						
							| 12 | 
							
								
							 | 
							cdlemefs32a1.y | 
							⊢ 𝑌  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑅  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							cdlemefs32a1.z | 
							⊢ 𝑍  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝑌 ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 15 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑡 ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nfra1 | 
							⊢ Ⅎ 𝑡 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝑌 )  | 
						
						
							| 17 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝐵  | 
						
						
							| 18 | 
							
								16 17
							 | 
							nfriota | 
							⊢ Ⅎ 𝑡 ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝑌 ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							nfcxfr | 
							⊢ Ⅎ 𝑡 𝑍  | 
						
						
							| 20 | 
							
								19
							 | 
							nfel1 | 
							⊢ Ⅎ 𝑡 𝑍  ∈  𝐴  | 
						
						
							| 21 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡  ≤   | 
						
						
							| 22 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑡 𝑊  | 
						
						
							| 23 | 
							
								19 21 22
							 | 
							nfbr | 
							⊢ Ⅎ 𝑡 𝑍  ≤  𝑊  | 
						
						
							| 24 | 
							
								23
							 | 
							nfn | 
							⊢ Ⅎ 𝑡 ¬  𝑍  ≤  𝑊  | 
						
						
							| 25 | 
							
								20 24
							 | 
							nfan | 
							⊢ Ⅎ 𝑡 ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 )  | 
						
						
							| 26 | 
							
								25
							 | 
							a1i | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  Ⅎ 𝑡 ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 ) )  | 
						
						
							| 27 | 
							
								13
							 | 
							a1i | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑍  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝑌 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑌  =  𝑍  →  ( 𝑌  ∈  𝐴  ↔  𝑍  ∈  𝐴 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑌  =  𝑍  →  ( 𝑌  ≤  𝑊  ↔  𝑍  ≤  𝑊 ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							notbid | 
							⊢ ( 𝑌  =  𝑍  →  ( ¬  𝑌  ≤  𝑊  ↔  ¬  𝑍  ≤  𝑊 ) )  | 
						
						
							| 31 | 
							
								28 30
							 | 
							anbi12d | 
							⊢ ( 𝑌  =  𝑍  →  ( ( 𝑌  ∈  𝐴  ∧  ¬  𝑌  ≤  𝑊 )  ↔  ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝑌  =  𝑍 )  →  ( ( 𝑌  ∈  𝐴  ∧  ¬  𝑌  ≤  𝑊 )  ↔  ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl1 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpl2r | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑡  ∈  𝐴 )  | 
						
						
							| 36 | 
							
								
							 | 
							simprrl | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑡  ≤  𝑊 )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							jca | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  | 
						
						
							| 38 | 
							
								
							 | 
							simpl2l | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 39 | 
							
								
							 | 
							simpl3 | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 41 | 
							
								2 3 4 5 6 7 8 12
							 | 
							cdleme7ga | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑌  ∈  𝐴 )  | 
						
						
							| 42 | 
							
								2 3 4 5 6 7 8 12
							 | 
							cdleme7 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑌  ≤  𝑊 )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							jca | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑡  ∈  𝐴  ∧  ¬  𝑡  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑌  ∈  𝐴  ∧  ¬  𝑌  ≤  𝑊 ) )  | 
						
						
							| 44 | 
							
								33 34 37 38 39 40 43
							 | 
							syl123anc | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) ) )  →  ( 𝑌  ∈  𝐴  ∧  ¬  𝑌  ≤  𝑊 ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							ex | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝑡  ∈  𝐴  ∧  ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑌  ∈  𝐴  ∧  ¬  𝑌  ≤  𝑊 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 47 | 
							
								
							 | 
							simp2rl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 48 | 
							
								
							 | 
							simp2rr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ¬  𝑅  ≤  𝑊 )  | 
						
						
							| 49 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 50 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 51 | 
							
								1 2 3 4 5 6 7 8 12 13
							 | 
							cdleme25cl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑃  ≠  𝑄  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑍  ∈  𝐵 )  | 
						
						
							| 52 | 
							
								46 47 48 49 50 51
							 | 
							syl122anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑍  ∈  𝐵 )  | 
						
						
							| 53 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 54 | 
							
								
							 | 
							simp12 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							simp13 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  | 
						
						
							| 56 | 
							
								2 3 5 6
							 | 
							cdlemb2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑃  ≠  𝑄 )  →  ∃ 𝑡  ∈  𝐴 ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 57 | 
							
								53 54 55 49 56
							 | 
							syl121anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ∃ 𝑡  ∈  𝐴 ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) ) )  | 
						
						
							| 58 | 
							
								15 26 27 32 45 52 57
							 | 
							riotasv3d | 
							⊢ ( ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  ∧  𝐵  ∈  V )  →  ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 ) )  | 
						
						
							| 59 | 
							
								14 58
							 | 
							mpan2 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 ) )  | 
						
						
							| 60 | 
							
								9 10 11 12 13
							 | 
							cdleme31sn1c | 
							⊢ ( ( 𝑅  ∈  𝐴  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  𝑍 )  | 
						
						
							| 61 | 
							
								47 50 60
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  =  𝑍 )  | 
						
						
							| 62 | 
							
								61
							 | 
							eleq1d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ∈  𝐴  ↔  𝑍  ∈  𝐴 ) )  | 
						
						
							| 63 | 
							
								61
							 | 
							breq1d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ≤  𝑊  ↔  𝑍  ≤  𝑊 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							notbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ¬  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ≤  𝑊  ↔  ¬  𝑍  ≤  𝑊 ) )  | 
						
						
							| 65 | 
							
								62 64
							 | 
							anbi12d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ( ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ∈  𝐴  ∧  ¬  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ≤  𝑊 )  ↔  ( 𝑍  ∈  𝐴  ∧  ¬  𝑍  ≤  𝑊 ) ) )  | 
						
						
							| 66 | 
							
								59 65
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ∈  𝐴  ∧  ¬  ⦋ 𝑅  /  𝑠 ⦌ 𝑁  ≤  𝑊 ) )  |