Metamath Proof Explorer


Theorem cdlemefs32snb

Description: Show closure of [_ R / s ]_ N . (Contributed by NM, 24-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b 𝐵 = ( Base ‘ 𝐾 )
cdlemefs32.l = ( le ‘ 𝐾 )
cdlemefs32.j = ( join ‘ 𝐾 )
cdlemefs32.m = ( meet ‘ 𝐾 )
cdlemefs32.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemefs32.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemefs32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemefs32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemefs32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemefs32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
cdlemefs32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
Assertion cdlemefs32snb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁𝐵 )

Proof

Step Hyp Ref Expression
1 cdlemefs32.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemefs32.l = ( le ‘ 𝐾 )
3 cdlemefs32.j = ( join ‘ 𝐾 )
4 cdlemefs32.m = ( meet ‘ 𝐾 )
5 cdlemefs32.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemefs32.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemefs32.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemefs32.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemefs32.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemefs32.i 𝐼 = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) )
11 cdlemefs32.n 𝑁 = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝐶 )
12 eqid ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) )
13 eqid ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) ) ) = ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑅 𝑡 ) 𝑊 ) ) ) ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cdlemefs32sn1aw ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝑅 / 𝑠 𝑁𝐴 ∧ ¬ 𝑅 / 𝑠 𝑁 𝑊 ) )
15 14 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁𝐴 )
16 1 5 atbase ( 𝑅 / 𝑠 𝑁𝐴 𝑅 / 𝑠 𝑁𝐵 )
17 15 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑠 𝑁𝐵 )