| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef46g.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef46g.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef46g.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef46g.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef46g.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef46g.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef46g.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef46g.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs46g.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef46g.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) ) ,  𝑥 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdlemef46.v | 
							⊢ 𝑉  =  ( ( 𝑄  ∨  𝑃 )  ∧  𝑊 )  | 
						
						
							| 12 | 
							
								
							 | 
							cdlemef46.n | 
							⊢ 𝑁  =  ( ( 𝑣  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							cdlemefs46.o | 
							⊢ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑁  ∨  ( ( 𝑢  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdlemef46.g | 
							⊢ 𝐺  =  ( 𝑎  ∈  𝐵  ↦  if ( ( 𝑄  ≠  𝑃  ∧  ¬  𝑎  ≤  𝑊 ) ,  ( ℩ 𝑐  ∈  𝐵 ∀ 𝑢  ∈  𝐴 ( ( ¬  𝑢  ≤  𝑊  ∧  ( 𝑢  ∨  ( 𝑎  ∧  𝑊 ) )  =  𝑎 )  →  𝑐  =  ( if ( 𝑢  ≤  ( 𝑄  ∨  𝑃 ) ,  ( ℩ 𝑏  ∈  𝐵 ∀ 𝑣  ∈  𝐴 ( ( ¬  𝑣  ≤  𝑊  ∧  ¬  𝑣  ≤  ( 𝑄  ∨  𝑃 ) )  →  𝑏  =  𝑂 ) ) ,  ⦋ 𝑢  /  𝑣 ⦌ 𝑁 )  ∨  ( 𝑎  ∧  𝑊 ) ) ) ) ,  𝑎 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							cdlemeg46.y | 
							⊢ 𝑌  =  ( ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  ∧  𝑊 )  | 
						
						
							| 16 | 
							
								
							 | 
							cdlemeg46.x | 
							⊢ 𝑋  =  ( ( ( 𝐹 ‘ 𝑅 )  ∨  𝑆 )  ∧  𝑊 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
							 | 
							cdlemeg46vrg | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑋  ≤  ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp11l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  HL )  | 
						
						
							| 19 | 
							
								
							 | 
							simp11 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp22 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdleme46fvaw | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  →  ( ( 𝐹 ‘ 𝑅 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑅 )  ≤  𝑊 ) )  | 
						
						
							| 23 | 
							
								20 21 22
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ 𝑅 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑅 )  ≤  𝑊 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 25 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 26 | 
							
								
							 | 
							simp3l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 27 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdleme46fsvlpq | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 ) )  ∧  𝑅  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐹 ‘ 𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 28 | 
							
								20 25 21 26 27
							 | 
							syl121anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 29 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( ( 𝐹 ‘ 𝑅 )  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐹 ‘ 𝑅 )  ≠  𝑆 )  | 
						
						
							| 31 | 
							
								28 29 30
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  ≠  𝑆 )  | 
						
						
							| 32 | 
							
								2 3 4 5 6 16
							 | 
							lhpat2 | 
							⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( ( 𝐹 ‘ 𝑅 )  ∈  𝐴  ∧  ¬  ( 𝐹 ‘ 𝑅 )  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ( 𝐹 ‘ 𝑅 )  ≠  𝑆 ) )  →  𝑋  ∈  𝐴 )  | 
						
						
							| 33 | 
							
								19 23 24 31 32
							 | 
							syl112anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑋  ∈  𝐴 )  | 
						
						
							| 34 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 35 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 36 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							cdlemeg46fvaw | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝐺 ‘ 𝑆 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑆 )  ≤  𝑊 ) )  | 
						
						
							| 37 | 
							
								20 35 25 36
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑆 )  ∈  𝐴  ∧  ¬  ( 𝐺 ‘ 𝑆 )  ≤  𝑊 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							simpld | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑆 )  ∈  𝐴 )  | 
						
						
							| 39 | 
							
								18
							 | 
							hllatd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝐾  ∈  Lat )  | 
						
						
							| 40 | 
							
								23
							 | 
							simpld | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐹 ‘ 𝑅 )  ∈  𝐴 )  | 
						
						
							| 41 | 
							
								1 3 5
							 | 
							hlatjcl | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝐹 ‘ 𝑅 )  ∈  𝐴  ∧  𝑆  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑅 )  ∨  𝑆 )  ∈  𝐵 )  | 
						
						
							| 42 | 
							
								18 40 24 41
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐹 ‘ 𝑅 )  ∨  𝑆 )  ∈  𝐵 )  | 
						
						
							| 43 | 
							
								
							 | 
							simp11r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐻 )  | 
						
						
							| 44 | 
							
								1 6
							 | 
							lhpbase | 
							⊢ ( 𝑊  ∈  𝐻  →  𝑊  ∈  𝐵 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑊  ∈  𝐵 )  | 
						
						
							| 46 | 
							
								1 2 4
							 | 
							latmle2 | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( 𝐹 ‘ 𝑅 )  ∨  𝑆 )  ∈  𝐵  ∧  𝑊  ∈  𝐵 )  →  ( ( ( 𝐹 ‘ 𝑅 )  ∨  𝑆 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 47 | 
							
								39 42 45 46
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( ( 𝐹 ‘ 𝑅 )  ∨  𝑆 )  ∧  𝑊 )  ≤  𝑊 )  | 
						
						
							| 48 | 
							
								16 47
							 | 
							eqbrtrid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑋  ≤  𝑊 )  | 
						
						
							| 49 | 
							
								37
							 | 
							simprd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  ( 𝐺 ‘ 𝑆 )  ≤  𝑊 )  | 
						
						
							| 50 | 
							
								
							 | 
							nbrne2 | 
							⊢ ( ( 𝑋  ≤  𝑊  ∧  ¬  ( 𝐺 ‘ 𝑆 )  ≤  𝑊 )  →  𝑋  ≠  ( 𝐺 ‘ 𝑆 ) )  | 
						
						
							| 51 | 
							
								48 49 50
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑋  ≠  ( 𝐺 ‘ 𝑆 ) )  | 
						
						
							| 52 | 
							
								2 3 5
							 | 
							hlatexch2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑋  ∈  𝐴  ∧  𝑅  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑆 )  ∈  𝐴 )  ∧  𝑋  ≠  ( 𝐺 ‘ 𝑆 ) )  →  ( 𝑋  ≤  ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  →  𝑅  ≤  ( 𝑋  ∨  ( 𝐺 ‘ 𝑆 ) ) ) )  | 
						
						
							| 53 | 
							
								18 33 34 38 51 52
							 | 
							syl131anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑋  ≤  ( 𝑅  ∨  ( 𝐺 ‘ 𝑆 ) )  →  𝑅  ≤  ( 𝑋  ∨  ( 𝐺 ‘ 𝑆 ) ) ) )  | 
						
						
							| 54 | 
							
								17 53
							 | 
							mpd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( 𝑋  ∨  ( 𝐺 ‘ 𝑆 ) ) )  | 
						
						
							| 55 | 
							
								3 5
							 | 
							hlatjcom | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝐴  ∧  ( 𝐺 ‘ 𝑆 )  ∈  𝐴 )  →  ( 𝑋  ∨  ( 𝐺 ‘ 𝑆 ) )  =  ( ( 𝐺 ‘ 𝑆 )  ∨  𝑋 ) )  | 
						
						
							| 56 | 
							
								18 33 38 55
							 | 
							syl3anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑋  ∨  ( 𝐺 ‘ 𝑆 ) )  =  ( ( 𝐺 ‘ 𝑆 )  ∨  𝑋 ) )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							breqtrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ≤  ( ( 𝐺 ‘ 𝑆 )  ∨  𝑋 ) )  |