Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef47.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemef47.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemef47.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemef47.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemef47.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemef47.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemef47.v |
⊢ 𝑉 = ( ( 𝑄 ∨ 𝑃 ) ∧ 𝑊 ) |
8 |
|
cdlemef47.n |
⊢ 𝑁 = ( ( 𝑣 ∨ 𝑉 ) ∧ ( 𝑃 ∨ ( ( 𝑄 ∨ 𝑣 ) ∧ 𝑊 ) ) ) |
9 |
|
cdlemefs47.o |
⊢ 𝑂 = ( ( 𝑄 ∨ 𝑃 ) ∧ ( 𝑁 ∨ ( ( 𝑢 ∨ 𝑣 ) ∧ 𝑊 ) ) ) |
10 |
|
cdlemef47.g |
⊢ 𝐺 = ( 𝑎 ∈ 𝐵 ↦ if ( ( 𝑄 ≠ 𝑃 ∧ ¬ 𝑎 ≤ 𝑊 ) , ( ℩ 𝑐 ∈ 𝐵 ∀ 𝑢 ∈ 𝐴 ( ( ¬ 𝑢 ≤ 𝑊 ∧ ( 𝑢 ∨ ( 𝑎 ∧ 𝑊 ) ) = 𝑎 ) → 𝑐 = ( if ( 𝑢 ≤ ( 𝑄 ∨ 𝑃 ) , ( ℩ 𝑏 ∈ 𝐵 ∀ 𝑣 ∈ 𝐴 ( ( ¬ 𝑣 ≤ 𝑊 ∧ ¬ 𝑣 ≤ ( 𝑄 ∨ 𝑃 ) ) → 𝑏 = 𝑂 ) ) , ⦋ 𝑢 / 𝑣 ⦌ 𝑁 ) ∨ ( 𝑎 ∧ 𝑊 ) ) ) ) , 𝑎 ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
cdlemeg47rv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑅 ) = ⦋ 𝑅 / 𝑢 ⦌ ⦋ 𝑆 / 𝑣 ⦌ 𝑂 ) |
12 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
13 |
|
nfcvd |
⊢ ( 𝑅 ∈ 𝐴 → Ⅎ 𝑢 ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
14 |
|
oveq1 |
⊢ ( 𝑢 = 𝑅 → ( 𝑢 ∨ 𝑆 ) = ( 𝑅 ∨ 𝑆 ) ) |
15 |
14
|
oveq1d |
⊢ ( 𝑢 = 𝑅 → ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) = ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) |
16 |
15
|
oveq2d |
⊢ ( 𝑢 = 𝑅 → ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑢 = 𝑅 → ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
18 |
13 17
|
csbiegf |
⊢ ( 𝑅 ∈ 𝐴 → ⦋ 𝑅 / 𝑢 ⦌ ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
19 |
12 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ⦋ 𝑅 / 𝑢 ⦌ ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
20 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
21 |
|
eqid |
⊢ ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
22 |
9 21
|
cdleme31se2 |
⊢ ( 𝑆 ∈ 𝐴 → ⦋ 𝑆 / 𝑣 ⦌ 𝑂 = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
23 |
20 22
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ⦋ 𝑆 / 𝑣 ⦌ 𝑂 = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
24 |
23
|
csbeq2dv |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ⦋ 𝑅 / 𝑢 ⦌ ⦋ 𝑆 / 𝑣 ⦌ 𝑂 = ⦋ 𝑅 / 𝑢 ⦌ ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑢 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
25 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
26 |
|
simp21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
27 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) |
28 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) |
29 |
1 2 3 4 5 6 7 8 9 10
|
cdlemeg47b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) → ( 𝐺 ‘ 𝑆 ) = ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ) |
30 |
25 26 27 28 29
|
syl121anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑆 ) = ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ) |
31 |
30
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐺 ‘ 𝑆 ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) = ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
32 |
31
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑄 ∨ 𝑃 ) ∧ ( ( 𝐺 ‘ 𝑆 ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ⦋ 𝑆 / 𝑣 ⦌ 𝑁 ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
33 |
19 24 32
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ⦋ 𝑅 / 𝑢 ⦌ ⦋ 𝑆 / 𝑣 ⦌ 𝑂 = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ( 𝐺 ‘ 𝑆 ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
34 |
11 33
|
eqtrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐺 ‘ 𝑅 ) = ( ( 𝑄 ∨ 𝑃 ) ∧ ( ( 𝐺 ‘ 𝑆 ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |