| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef47.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef47.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef47.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef47.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef47.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef47.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef47.v | 
							⊢ 𝑉  =  ( ( 𝑄  ∨  𝑃 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef47.n | 
							⊢ 𝑁  =  ( ( 𝑣  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs47.o | 
							⊢ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑁  ∨  ( ( 𝑢  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef47.g | 
							⊢ 𝐺  =  ( 𝑎  ∈  𝐵  ↦  if ( ( 𝑄  ≠  𝑃  ∧  ¬  𝑎  ≤  𝑊 ) ,  ( ℩ 𝑐  ∈  𝐵 ∀ 𝑢  ∈  𝐴 ( ( ¬  𝑢  ≤  𝑊  ∧  ( 𝑢  ∨  ( 𝑎  ∧  𝑊 ) )  =  𝑎 )  →  𝑐  =  ( if ( 𝑢  ≤  ( 𝑄  ∨  𝑃 ) ,  ( ℩ 𝑏  ∈  𝐵 ∀ 𝑣  ∈  𝐴 ( ( ¬  𝑣  ≤  𝑊  ∧  ¬  𝑣  ≤  ( 𝑄  ∨  𝑃 ) )  →  𝑏  =  𝑂 ) ) ,  ⦋ 𝑢  /  𝑣 ⦌ 𝑁 )  ∨  ( 𝑎  ∧  𝑊 ) ) ) ) ,  𝑎 ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdlemeg47rv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑅 )  =  ⦋ 𝑅  /  𝑢 ⦌ ⦋ 𝑆  /  𝑣 ⦌ 𝑂 )  | 
						
						
							| 12 | 
							
								
							 | 
							simp22l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑅  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								
							 | 
							nfcvd | 
							⊢ ( 𝑅  ∈  𝐴  →  Ⅎ 𝑢 ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑢  =  𝑅  →  ( 𝑢  ∨  𝑆 )  =  ( 𝑅  ∨  𝑆 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							⊢ ( 𝑢  =  𝑅  →  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 )  =  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2d | 
							⊢ ( 𝑢  =  𝑅  →  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) )  =  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2d | 
							⊢ ( 𝑢  =  𝑅  →  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							csbiegf | 
							⊢ ( 𝑅  ∈  𝐴  →  ⦋ 𝑅  /  𝑢 ⦌ ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ⦋ 𝑅  /  𝑢 ⦌ ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp23l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑆  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 22 | 
							
								9 21
							 | 
							cdleme31se2 | 
							⊢ ( 𝑆  ∈  𝐴  →  ⦋ 𝑆  /  𝑣 ⦌ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							syl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ⦋ 𝑆  /  𝑣 ⦌ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							csbeq2dv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ⦋ 𝑅  /  𝑢 ⦌ ⦋ 𝑆  /  𝑣 ⦌ 𝑂  =  ⦋ 𝑅  /  𝑢 ⦌ ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑢  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp21 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  𝑃  ≠  𝑄 )  | 
						
						
							| 27 | 
							
								
							 | 
							simp23 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simp3r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdlemeg47b | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) )  →  ( 𝐺 ‘ 𝑆 )  =  ⦋ 𝑆  /  𝑣 ⦌ 𝑁 )  | 
						
						
							| 30 | 
							
								25 26 27 28 29
							 | 
							syl121anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑆 )  =  ⦋ 𝑆  /  𝑣 ⦌ 𝑁 )  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝐺 ‘ 𝑆 )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) )  =  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq2d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( ( 𝑄  ∨  𝑃 )  ∧  ( ( 𝐺 ‘ 𝑆 )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ⦋ 𝑆  /  𝑣 ⦌ 𝑁  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 33 | 
							
								19 24 32
							 | 
							3eqtr4d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ⦋ 𝑅  /  𝑢 ⦌ ⦋ 𝑆  /  𝑣 ⦌ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ( 𝐺 ‘ 𝑆 )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 34 | 
							
								11 33
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑅  ∈  𝐴  ∧  ¬  𝑅  ≤  𝑊 )  ∧  ( 𝑆  ∈  𝐴  ∧  ¬  𝑆  ≤  𝑊 ) )  ∧  ( 𝑅  ≤  ( 𝑃  ∨  𝑄 )  ∧  ¬  𝑆  ≤  ( 𝑃  ∨  𝑄 ) ) )  →  ( 𝐺 ‘ 𝑅 )  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( ( 𝐺 ‘ 𝑆 )  ∨  ( ( 𝑅  ∨  𝑆 )  ∧  𝑊 ) ) ) )  |