| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef46g.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef46g.l | 
							⊢  ≤   =  ( le ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef46g.j | 
							⊢  ∨   =  ( join ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef46g.m | 
							⊢  ∧   =  ( meet ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef46g.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef46g.h | 
							⊢ 𝐻  =  ( LHyp ‘ 𝐾 )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef46g.u | 
							⊢ 𝑈  =  ( ( 𝑃  ∨  𝑄 )  ∧  𝑊 )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef46g.d | 
							⊢ 𝐷  =  ( ( 𝑡  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs46g.e | 
							⊢ 𝐸  =  ( ( 𝑃  ∨  𝑄 )  ∧  ( 𝐷  ∨  ( ( 𝑠  ∨  𝑡 )  ∧  𝑊 ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef46g.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  𝐵  ↦  if ( ( 𝑃  ≠  𝑄  ∧  ¬  𝑥  ≤  𝑊 ) ,  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) ) ,  𝑥 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdlemef46.v | 
							⊢ 𝑉  =  ( ( 𝑄  ∨  𝑃 )  ∧  𝑊 )  | 
						
						
							| 12 | 
							
								
							 | 
							cdlemef46.n | 
							⊢ 𝑁  =  ( ( 𝑣  ∨  𝑉 )  ∧  ( 𝑃  ∨  ( ( 𝑄  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							cdlemefs46.o | 
							⊢ 𝑂  =  ( ( 𝑄  ∨  𝑃 )  ∧  ( 𝑁  ∨  ( ( 𝑢  ∨  𝑣 )  ∧  𝑊 ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cdlemef46.g | 
							⊢ 𝐺  =  ( 𝑎  ∈  𝐵  ↦  if ( ( 𝑄  ≠  𝑃  ∧  ¬  𝑎  ≤  𝑊 ) ,  ( ℩ 𝑐  ∈  𝐵 ∀ 𝑢  ∈  𝐴 ( ( ¬  𝑢  ≤  𝑊  ∧  ( 𝑢  ∨  ( 𝑎  ∧  𝑊 ) )  =  𝑎 )  →  𝑐  =  ( if ( 𝑢  ≤  ( 𝑄  ∨  𝑃 ) ,  ( ℩ 𝑏  ∈  𝐵 ∀ 𝑣  ∈  𝐴 ( ( ¬  𝑣  ≤  𝑊  ∧  ¬  𝑣  ≤  ( 𝑄  ∨  𝑃 ) )  →  𝑏  =  𝑂 ) ) ,  ⦋ 𝑢  /  𝑣 ⦌ 𝑁 )  ∨  ( 𝑎  ∧  𝑊 ) ) ) ) ,  𝑎 ) )  | 
						
						
							| 15 | 
							
								
							 | 
							vex | 
							⊢ 𝑠  ∈  V  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							⊢ ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 17 | 
							
								8 16
							 | 
							cdleme31sc | 
							⊢ ( 𝑠  ∈  V  →  ⦋ 𝑠  /  𝑡 ⦌ 𝐷  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							ax-mp | 
							⊢ ⦋ 𝑠  /  𝑡 ⦌ 𝐷  =  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							⊢ ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) )  =  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							⊢ ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  =  ( ℩ 𝑧  ∈  𝐵 ∀ 𝑠  ∈  𝐴 ( ( ¬  𝑠  ≤  𝑊  ∧  ( 𝑠  ∨  ( 𝑥  ∧  𝑊 ) )  =  𝑥 )  →  𝑧  =  ( if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  ∨  ( 𝑥  ∧  𝑊 ) ) ) )  | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 7 18 8 9 19 20 21 10
							 | 
							cdleme32le | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  𝑋  ≤  𝑌 )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							3expia | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑌  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp2l | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  𝑋  ∈  𝐵 )  | 
						
						
							| 26 | 
							
								
							 | 
							biid | 
							⊢ ( 𝑠  ≤  ( 𝑃  ∨  𝑄 )  ↔  𝑠  ≤  ( 𝑃  ∨  𝑄 ) )  | 
						
						
							| 27 | 
							
								26 18
							 | 
							ifbieq2i | 
							⊢ if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ⦋ 𝑠  /  𝑡 ⦌ 𝐷 )  =  if ( 𝑠  ≤  ( 𝑃  ∨  𝑄 ) ,  ( ℩ 𝑦  ∈  𝐵 ∀ 𝑡  ∈  𝐴 ( ( ¬  𝑡  ≤  𝑊  ∧  ¬  𝑡  ≤  ( 𝑃  ∨  𝑄 ) )  →  𝑦  =  𝐸 ) ) ,  ( ( 𝑠  ∨  𝑈 )  ∧  ( 𝑄  ∨  ( ( 𝑃  ∨  𝑠 )  ∧  𝑊 ) ) ) )  | 
						
						
							| 28 | 
							
								1 2 3 4 5 6 7 16 8 9 19 27 21 10
							 | 
							cdleme32fvcl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 29 | 
							
								24 25 28
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ∈  𝐵 )  | 
						
						
							| 30 | 
							
								
							 | 
							simp2r | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  𝑌  ∈  𝐵 )  | 
						
						
							| 31 | 
							
								1 2 3 4 5 6 7 16 8 9 19 27 21 10
							 | 
							cdleme32fvcl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑌  ∈  𝐵 )  →  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 32 | 
							
								24 30 31
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 )  | 
						
						
							| 33 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  | 
						
						
							| 34 | 
							
								1 2 3 4 5 6 11 12 13 14
							 | 
							cdlemeg49le | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( ( 𝐹 ‘ 𝑋 )  ∈  𝐵  ∧  ( 𝐹 ‘ 𝑌 )  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) )  ≤  ( 𝐺 ‘ ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 35 | 
							
								24 29 32 33 34
							 | 
							syl121anc | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) )  ≤  ( 𝐺 ‘ ( 𝐹 ‘ 𝑌 ) ) )  | 
						
						
							| 36 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							cdleme48gfv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑋  ∈  𝐵 )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantrr | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) )  =  𝑋 )  | 
						
						
							| 38 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							cdleme48gfv | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  𝑌  ∈  𝐵 )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantrl | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝐺 ‘ ( 𝐹 ‘ 𝑌 ) )  =  𝑌 )  | 
						
						
							| 40 | 
							
								37 39
							 | 
							breq12d | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) )  ≤  ( 𝐺 ‘ ( 𝐹 ‘ 𝑌 ) )  ↔  𝑋  ≤  𝑌 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							3adant3 | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  ( ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) )  ≤  ( 𝐺 ‘ ( 𝐹 ‘ 𝑌 ) )  ↔  𝑋  ≤  𝑌 ) )  | 
						
						
							| 42 | 
							
								35 41
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) )  →  𝑋  ≤  𝑌 )  | 
						
						
							| 43 | 
							
								42
							 | 
							3expia | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 )  →  𝑋  ≤  𝑌 ) )  | 
						
						
							| 44 | 
							
								23 43
							 | 
							impbid | 
							⊢ ( ( ( ( 𝐾  ∈  HL  ∧  𝑊  ∈  𝐻 )  ∧  ( 𝑃  ∈  𝐴  ∧  ¬  𝑃  ≤  𝑊 )  ∧  ( 𝑄  ∈  𝐴  ∧  ¬  𝑄  ≤  𝑊 ) )  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 ) )  →  ( 𝑋  ≤  𝑌  ↔  ( 𝐹 ‘ 𝑋 )  ≤  ( 𝐹 ‘ 𝑌 ) ) )  |