Metamath Proof Explorer


Theorem cdlemesner

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdlemesner.l = ( le ‘ 𝐾 )
cdlemesner.j = ( join ‘ 𝐾 )
cdlemesner.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemesner.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion cdlemesner ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝑅 )

Proof

Step Hyp Ref Expression
1 cdlemesner.l = ( le ‘ 𝐾 )
2 cdlemesner.j = ( join ‘ 𝐾 )
3 cdlemesner.a 𝐴 = ( Atoms ‘ 𝐾 )
4 cdlemesner.h 𝐻 = ( LHyp ‘ 𝐾 )
5 nbrne2 ( ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) → 𝑅𝑆 )
6 5 3ad2ant3 ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑅𝑆 )
7 6 necomd ( ( 𝐾 ∈ HL ∧ ( 𝑅𝐴𝑆𝐴 ) ∧ ( 𝑅 ( 𝑃 𝑄 ) ∧ ¬ 𝑆 ( 𝑃 𝑄 ) ) ) → 𝑆𝑅 )