Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemf.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemf.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
cdlemf.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
4 |
|
cdlemf.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
5 |
|
cdlemf.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
7 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
8 |
1 6 2 3 7
|
cdlemf2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
9 |
|
simp1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → 𝑝 ∈ 𝐴 ) |
11 |
|
simp3ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ¬ 𝑝 ≤ 𝑊 ) |
12 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → 𝑞 ∈ 𝐴 ) |
13 |
|
simp3lr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ¬ 𝑞 ≤ 𝑊 ) |
14 |
1 2 3 4
|
cdleme50ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) |
15 |
9 10 11 12 13 14
|
syl122anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 ) |
16 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ( 𝑓 ‘ 𝑝 ) = 𝑞 ) |
17 |
16
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓 ‘ 𝑝 ) ) = ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) |
18 |
17
|
oveq1d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
19 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
20 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → 𝑓 ∈ 𝑇 ) |
21 |
|
simp13l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → 𝑝 ∈ 𝐴 ) |
22 |
|
simp2ll |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ¬ 𝑝 ≤ 𝑊 ) |
23 |
1 6 7 2 3 4 5
|
trlval2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ) → ( 𝑅 ‘ 𝑓 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
24 |
19 20 21 22 23
|
syl112anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ( 𝑅 ‘ 𝑓 ) = ( ( 𝑝 ( join ‘ 𝐾 ) ( 𝑓 ‘ 𝑝 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
25 |
|
simp2r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
26 |
18 24 25
|
3eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∧ ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) ) → ( 𝑅 ‘ 𝑓 ) = 𝑈 ) |
27 |
26
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ) → ( ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) → ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) ) |
28 |
27
|
3expia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) → ( ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) → ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) ) ) |
29 |
28
|
3imp |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( ( 𝑓 ∈ 𝑇 ∧ ( 𝑓 ‘ 𝑝 ) = 𝑞 ) → ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) |
30 |
29
|
expd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( 𝑓 ∈ 𝑇 → ( ( 𝑓 ‘ 𝑝 ) = 𝑞 → ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) ) |
31 |
30
|
reximdvai |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ( ∃ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑝 ) = 𝑞 → ∃ 𝑓 ∈ 𝑇 ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) |
32 |
15 31
|
mpd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) ∧ ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑅 ‘ 𝑓 ) = 𝑈 ) |
33 |
32
|
3exp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ( ( 𝑝 ∈ 𝐴 ∧ 𝑞 ∈ 𝐴 ) → ( ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) ) |
34 |
33
|
rexlimdvv |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ( ∃ 𝑝 ∈ 𝐴 ∃ 𝑞 ∈ 𝐴 ( ( ¬ 𝑝 ≤ 𝑊 ∧ ¬ 𝑞 ≤ 𝑊 ) ∧ 𝑈 = ( ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ( meet ‘ 𝐾 ) 𝑊 ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑅 ‘ 𝑓 ) = 𝑈 ) ) |
35 |
8 34
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ) → ∃ 𝑓 ∈ 𝑇 ( 𝑅 ‘ 𝑓 ) = 𝑈 ) |