Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg8.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg8.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg8.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg8.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg8.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg8.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
8 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑊 ∈ 𝐻 ) |
9 |
7 8
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
10 |
|
3simpc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
11 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐹 ∈ 𝑇 ) |
12 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
13 |
5 6 1 2 4 3 12
|
cdlemg2k |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
14 |
9 10 11 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
15 |
14
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∧ 𝑊 ) ) |
16 |
|
simp2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
17 |
1 4 5 6
|
ltrnel |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
18 |
9 11 16 17
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) |
19 |
|
eqid |
⊢ ( 0. ‘ 𝐾 ) = ( 0. ‘ 𝐾 ) |
20 |
1 3 19 4 5
|
lhpmat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝐹 ‘ 𝑃 ) ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
21 |
9 18 20
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) = ( 0. ‘ 𝐾 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 0. ‘ 𝐾 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ) |
23 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
24 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
25 |
9 11 23 24
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
26 |
7
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ Lat ) |
27 |
|
simp3l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑄 ∈ 𝐴 ) |
28 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
29 |
28 2 4
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
30 |
7 23 27 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
31 |
28 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
32 |
8 31
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
33 |
28 3
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
34 |
26 30 32 33
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
35 |
28 1 3
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
36 |
26 30 32 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) |
37 |
28 1 2 3 4
|
atmod4i2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ≤ 𝑊 ) → ( ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∧ 𝑊 ) ) |
38 |
7 25 34 32 36 37
|
syl131anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∧ 𝑊 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∧ 𝑊 ) ) |
39 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
40 |
7 39
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
41 |
28 2 19
|
olj02 |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 0. ‘ 𝐾 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
42 |
40 34 41
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( 0. ‘ 𝐾 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
43 |
22 38 42
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |
44 |
15 43
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) ) |