Metamath Proof Explorer


Theorem cdlemg17h

Description: TODO: fix comment. (Contributed by NM, 10-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg17h ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑆 = ( 𝐹𝑃 ) ∨ 𝑆 = ( 𝐹𝑄 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
9 simp23r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) )
10 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
11 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹𝑇 )
12 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑆𝐴 )
13 1 4 5 6 ltrncnvat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑆𝐴 ) → ( 𝐹𝑆 ) ∈ 𝐴 )
14 10 11 12 13 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑆 ) ∈ 𝐴 )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 15 4 atbase ( ( 𝐹𝑆 ) ∈ 𝐴 → ( 𝐹𝑆 ) ∈ ( Base ‘ 𝐾 ) )
17 14 16 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑆 ) ∈ ( Base ‘ 𝐾 ) )
18 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝐴 )
19 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄𝐴 )
20 15 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
21 8 18 19 20 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
22 15 1 5 6 ltrnle ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝐹𝑆 ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝐹𝑆 ) ( 𝑃 𝑄 ) ↔ ( 𝐹 ‘ ( 𝐹𝑆 ) ) ( 𝐹 ‘ ( 𝑃 𝑄 ) ) ) )
23 10 11 17 21 22 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑆 ) ( 𝑃 𝑄 ) ↔ ( 𝐹 ‘ ( 𝐹𝑆 ) ) ( 𝐹 ‘ ( 𝑃 𝑄 ) ) ) )
24 15 5 6 ltrn1o ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
25 10 11 24 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) )
26 15 4 atbase ( 𝑆𝐴𝑆 ∈ ( Base ‘ 𝐾 ) )
27 12 26 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑆 ∈ ( Base ‘ 𝐾 ) )
28 f1ocnvfv2 ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( 𝐹 ‘ ( 𝐹𝑆 ) ) = 𝑆 )
29 25 27 28 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐹𝑆 ) ) = 𝑆 )
30 15 4 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
31 18 30 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
32 15 4 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
33 19 32 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
34 15 2 5 6 ltrnj ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝐹 ‘ ( 𝑃 𝑄 ) ) = ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) )
35 10 11 31 33 34 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝑃 𝑄 ) ) = ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) )
36 29 35 breq12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐹𝑆 ) ) ( 𝐹 ‘ ( 𝑃 𝑄 ) ) ↔ 𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) )
37 23 36 bitr2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ↔ ( 𝐹𝑆 ) ( 𝑃 𝑄 ) ) )
38 9 37 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑆 ) ( 𝑃 𝑄 ) )
39 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) )
40 simp23l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝑄 )
41 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) )
42 1 4 5 6 ltrncnvel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ) → ( ( 𝐹𝑆 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑆 ) 𝑊 ) )
43 10 11 41 42 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑆 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑆 ) 𝑊 ) )
44 1 2 4 cdleme0nex ( ( ( 𝐾 ∈ HL ∧ ( 𝐹𝑆 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ∧ ( ( 𝐹𝑆 ) ∈ 𝐴 ∧ ¬ ( 𝐹𝑆 ) 𝑊 ) ) → ( ( 𝐹𝑆 ) = 𝑃 ∨ ( 𝐹𝑆 ) = 𝑄 ) )
45 8 38 39 18 19 40 43 44 syl331anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑆 ) = 𝑃 ∨ ( 𝐹𝑆 ) = 𝑄 ) )
46 f1ocnvfvb ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹𝑃 ) = 𝑆 ↔ ( 𝐹𝑆 ) = 𝑃 ) )
47 25 31 27 46 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑃 ) = 𝑆 ↔ ( 𝐹𝑆 ) = 𝑃 ) )
48 eqcom ( ( 𝐹𝑃 ) = 𝑆𝑆 = ( 𝐹𝑃 ) )
49 47 48 bitr3di ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑆 ) = 𝑃𝑆 = ( 𝐹𝑃 ) ) )
50 f1ocnvfvb ( ( 𝐹 : ( Base ‘ 𝐾 ) –1-1-onto→ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑆 ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝐹𝑄 ) = 𝑆 ↔ ( 𝐹𝑆 ) = 𝑄 ) )
51 25 33 27 50 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑄 ) = 𝑆 ↔ ( 𝐹𝑆 ) = 𝑄 ) )
52 eqcom ( ( 𝐹𝑄 ) = 𝑆𝑆 = ( 𝐹𝑄 ) )
53 51 52 bitr3di ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹𝑆 ) = 𝑄𝑆 = ( 𝐹𝑄 ) ) )
54 49 53 orbi12d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( ( 𝐹𝑆 ) = 𝑃 ∨ ( 𝐹𝑆 ) = 𝑄 ) ↔ ( 𝑆 = ( 𝐹𝑃 ) ∨ 𝑆 = ( 𝐹𝑄 ) ) ) )
55 45 54 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝑆𝐴 ∧ ¬ 𝑆 𝑊 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑃𝑄𝑆 ( ( 𝐹𝑃 ) ( 𝐹𝑄 ) ) ) ) ∧ ( ( 𝐺𝑃 ) ≠ 𝑃 ∧ ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑆 = ( 𝐹𝑃 ) ∨ 𝑆 = ( 𝐹𝑄 ) ) )