Metamath Proof Explorer


Theorem cdlemg18a

Description: Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg18a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹𝑄 ) ) ≠ ( 𝑄 ( 𝐹𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) )
9 simpl1l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → 𝐾 ∈ HL )
10 simpl21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → 𝑃𝐴 )
11 simpl1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simpl23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → 𝐹𝑇 )
13 simpl22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → 𝑄𝐴 )
14 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑄𝐴 ) → ( 𝐹𝑄 ) ∈ 𝐴 )
15 11 12 13 14 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝐹𝑄 ) ∈ 𝐴 )
16 1 4 5 6 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝑃𝐴 ) → ( 𝐹𝑃 ) ∈ 𝐴 )
17 11 12 10 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝐹𝑃 ) ∈ 𝐴 )
18 simpl3l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → 𝑃𝑄 )
19 4 5 6 ltrn11at ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( 𝑃𝐴𝑄𝐴𝑃𝑄 ) ) → ( 𝐹𝑃 ) ≠ ( 𝐹𝑄 ) )
20 11 12 10 13 18 19 syl113anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝐹𝑃 ) ≠ ( 𝐹𝑄 ) )
21 20 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝐹𝑄 ) ≠ ( 𝐹𝑃 ) )
22 simpr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) )
23 2 4 hlatexch4 ( ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝐹𝑄 ) ∈ 𝐴 ) ∧ ( 𝑄𝐴 ∧ ( 𝐹𝑃 ) ∈ 𝐴 ) ∧ ( 𝑃𝑄 ∧ ( 𝐹𝑄 ) ≠ ( 𝐹𝑃 ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) ) → ( 𝑃 𝑄 ) = ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
24 9 10 15 13 17 18 21 22 23 syl323anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( 𝑃 𝑄 ) = ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) )
25 24 eqcomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) ∧ ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) = ( 𝑃 𝑄 ) )
26 25 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( 𝑃 ( 𝐹𝑄 ) ) = ( 𝑄 ( 𝐹𝑃 ) ) → ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) = ( 𝑃 𝑄 ) ) )
27 26 necon3d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) → ( 𝑃 ( 𝐹𝑄 ) ) ≠ ( 𝑄 ( 𝐹𝑃 ) ) ) )
28 8 27 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴𝑄𝐴𝐹𝑇 ) ∧ ( 𝑃𝑄 ∧ ( ( 𝐹𝑄 ) ( 𝐹𝑃 ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝑃 ( 𝐹𝑄 ) ) ≠ ( 𝑄 ( 𝐹𝑃 ) ) )