Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp3r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) |
9 |
|
simpl1l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simpl21 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
simpl1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
12 |
|
simpl23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝐹 ∈ 𝑇 ) |
13 |
|
simpl22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑄 ∈ 𝐴 ) |
14 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
15 |
11 12 13 14
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
16 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
17 |
11 12 10 16
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
18 |
|
simpl3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → 𝑃 ≠ 𝑄 ) |
19 |
4 5 6
|
ltrn11at |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑄 ) ) |
20 |
11 12 10 13 18 19
|
syl113anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≠ ( 𝐹 ‘ 𝑄 ) ) |
21 |
20
|
necomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑄 ) ≠ ( 𝐹 ‘ 𝑃 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
23 |
2 4
|
hlatexch4 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑄 ) ≠ ( 𝐹 ‘ 𝑃 ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
24 |
9 10 15 13 17 18 21 22 23
|
syl323anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝑃 ∨ 𝑄 ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
25 |
24
|
eqcomd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑃 ∨ 𝑄 ) ) |
26 |
25
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑃 ∨ 𝑄 ) ) ) |
27 |
26
|
necon3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) |
28 |
8 27
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |