Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg18b.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
9 |
|
simp1l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐾 ∈ HL ) |
10 |
|
simp21l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ∈ 𝐴 ) |
11 |
|
simp1r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑊 ∈ 𝐻 ) |
12 |
|
simp21 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
13 |
|
simp22l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ∈ 𝐴 ) |
14 |
|
simp31 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑃 ≠ 𝑄 ) |
15 |
1 2 3 4 5 8
|
cdleme0a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄 ) ) → 𝑈 ∈ 𝐴 ) |
16 |
9 11 12 13 14 15
|
syl212anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑈 ∈ 𝐴 ) |
17 |
|
simp1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
18 |
|
simp23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝐹 ∈ 𝑇 ) |
19 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑄 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
20 |
17 18 13 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) |
21 |
1 4 5 6
|
ltrnat |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ 𝑃 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
22 |
17 18 10 21
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) |
23 |
1 2 3 4 5 6 7 8
|
cdlemg18b |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ¬ 𝑃 ≤ ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
24 |
|
simp32 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ) |
25 |
24
|
necomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ≠ ( 𝐹 ‘ 𝑃 ) ) |
26 |
23 25
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ¬ 𝑃 ≤ ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑄 ≠ ( 𝐹 ‘ 𝑃 ) ) ) |
27 |
|
simp33 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) |
28 |
1 2 3 4 5 6 7
|
cdlemg18a |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
29 |
17 10 13 18 14 27 28
|
syl132anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
30 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
31 |
9 10 13 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑄 ) ) |
32 |
1 2 3 4 5 8
|
cdleme0cp |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) ) |
33 |
9 11 12 13 32
|
syl22anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑃 ∨ 𝑈 ) = ( 𝑃 ∨ 𝑄 ) ) |
34 |
31 33
|
breqtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ) |
35 |
1 2 4
|
hlatlej2 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
36 |
9 20 22 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
37 |
|
simp22 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
38 |
5 6 1 2 4 3 8
|
cdlemg2kq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐹 ∈ 𝑇 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ 𝑈 ) ) |
39 |
17 12 37 18 38
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ 𝑈 ) ) |
40 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
41 |
9 22 20 40
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
42 |
2 4
|
hlatjcom |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑄 ) ∨ 𝑈 ) = ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
43 |
9 20 16 42
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ 𝑈 ) = ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
44 |
39 41 43
|
3eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) = ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
45 |
36 44
|
breqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
46 |
34 45
|
jca |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ∧ ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) |
47 |
1 2 3 4
|
ps-2c |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ) ∧ ( ( 𝐹 ‘ 𝑄 ) ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝐴 ) ∧ ( ( ¬ 𝑃 ≤ ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ 𝑄 ≠ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ≠ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑄 ≤ ( 𝑃 ∨ 𝑈 ) ∧ ( 𝐹 ‘ 𝑃 ) ≤ ( 𝑈 ∨ ( 𝐹 ‘ 𝑄 ) ) ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∈ 𝐴 ) |
48 |
9 10 16 20 13 22 26 29 46 47
|
syl333anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∈ 𝐴 ) |