Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg12.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
cdlemg12.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
cdlemg12.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
4 |
|
cdlemg12.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
cdlemg12.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
cdlemg12.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
cdlemg12b.r |
⊢ 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
simp1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) |
9 |
|
simp21r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐺 ∈ 𝑇 ) |
10 |
|
simp22 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝑃 ≠ 𝑄 ) |
11 |
|
simp23 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) |
12 |
|
simp31 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ) |
13 |
|
simp33 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) |
14 |
1 2 3 4 5 6 7
|
cdlemg17b |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
15 |
8 9 10 11 12 13 14
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
16 |
15
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) = ( 𝐹 ‘ 𝑄 ) ) |
17 |
16
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) = ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
18 |
|
simp21l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → 𝐹 ∈ 𝑇 ) |
19 |
1 2 3 4 5 6 7
|
cdlemg17bq |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐺 ‘ 𝑄 ) = 𝑃 ) |
20 |
8 18 9 10 11 12 13 19
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐺 ‘ 𝑄 ) = 𝑃 ) |
21 |
20
|
fveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = ( 𝐹 ‘ 𝑃 ) ) |
22 |
21
|
oveq2d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
23 |
17 22
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) = ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ) |
24 |
|
simp11 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
25 |
|
simp12 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
26 |
|
simp13 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) |
27 |
|
simp32 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) |
28 |
1 2 3 4 5 6
|
cdlemg11aq |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ≠ 𝑄 ) |
29 |
24 25 26 18 9 27 28
|
syl123anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ≠ 𝑄 ) |
30 |
21 29
|
eqnetrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ) |
31 |
1 2 3 4 5 6 7
|
cdlemg17irq |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 ≠ 𝑄 ) ∧ ( ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ∧ ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = ( 𝐹 ‘ 𝑃 ) ) |
32 |
8 18 9 10 11 12 13 31
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) = ( 𝐹 ‘ 𝑃 ) ) |
33 |
16 32
|
oveq12d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) = ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ) |
34 |
33 27
|
eqnetrrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) |
35 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
36 |
1 2 3 4 5 6 7 35
|
cdlemg18c |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ∧ 𝐹 ∈ 𝑇 ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝐹 ‘ 𝑃 ) ≠ 𝑄 ∧ ( ( 𝐹 ‘ 𝑄 ) ∨ ( 𝐹 ‘ 𝑃 ) ) ≠ ( 𝑃 ∨ 𝑄 ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∈ 𝐴 ) |
37 |
24 25 26 18 10 30 34 36
|
syl133anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ 𝑄 ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ 𝑃 ) ) ) ∈ 𝐴 ) |
38 |
23 37
|
eqeltrd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( ( 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ 𝑃 ≠ 𝑄 ∧ ( 𝐺 ‘ 𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅 ‘ 𝐺 ) ≤ ( 𝑃 ∨ 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ≠ ( 𝑃 ∨ 𝑄 ) ∧ ¬ ∃ 𝑟 ∈ 𝐴 ( ¬ 𝑟 ≤ 𝑊 ∧ ( 𝑃 ∨ 𝑟 ) = ( 𝑄 ∨ 𝑟 ) ) ) ) → ( ( 𝑃 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑃 ) ) ) ∧ ( 𝑄 ∨ ( 𝐹 ‘ ( 𝐺 ‘ 𝑄 ) ) ) ) ∈ 𝐴 ) |