Metamath Proof Explorer


Theorem cdlemg19a

Description: Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013)

Ref Expression
Hypotheses cdlemg12.l = ( le ‘ 𝐾 )
cdlemg12.j = ( join ‘ 𝐾 )
cdlemg12.m = ( meet ‘ 𝐾 )
cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg19a ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) = ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )

Proof

Step Hyp Ref Expression
1 cdlemg12.l = ( le ‘ 𝐾 )
2 cdlemg12.j = ( join ‘ 𝐾 )
3 cdlemg12.m = ( meet ‘ 𝐾 )
4 cdlemg12.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemg12.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemg12.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemg12b.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ HL )
9 8 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ Lat )
10 simp12l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃𝐴 )
11 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
12 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹𝑇𝐺𝑇 ) )
13 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
14 11 12 10 13 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 )
15 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
16 15 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴 ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) )
17 8 10 14 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) )
18 simp13l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑄𝐴 )
19 1 4 5 6 ltrncoat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑄𝐴 ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
20 11 12 18 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 )
21 15 2 4 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑄𝐴 ∧ ( 𝐹 ‘ ( 𝐺𝑄 ) ) ∈ 𝐴 ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) )
22 8 18 20 21 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) )
23 15 1 3 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ∈ ( Base ‘ 𝐾 ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
24 9 17 22 23 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) )
25 1 2 3 4 5 6 7 cdlemg18 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) 𝑊 )
26 1 2 3 4 5 6 7 cdlemg18d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ∈ 𝐴 )
27 15 4 atbase ( ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ∈ 𝐴 → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ∈ ( Base ‘ 𝐾 ) )
28 26 27 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ∈ ( Base ‘ 𝐾 ) )
29 simp11r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑊𝐻 )
30 15 5 lhpbase ( 𝑊𝐻𝑊 ∈ ( Base ‘ 𝐾 ) )
31 29 30 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) )
32 15 1 3 latlem12 ( ( 𝐾 ∈ Lat ∧ ( ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∧ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) 𝑊 ) ↔ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) )
33 9 28 17 31 32 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ∧ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) 𝑊 ) ↔ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) )
34 24 25 33 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )
35 hlatl ( 𝐾 ∈ HL → 𝐾 ∈ AtLat )
36 8 35 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐾 ∈ AtLat )
37 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
38 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) )
39 simp21l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐹𝑇 )
40 simp21r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝐺𝑇 )
41 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) )
42 1 2 3 4 5 6 cdlemg11a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝐹𝑇𝐺𝑇 ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 )
43 11 37 38 39 40 41 42 syl123anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( 𝐹 ‘ ( 𝐺𝑃 ) ) ≠ 𝑃 )
44 43 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → 𝑃 ≠ ( 𝐹 ‘ ( 𝐺𝑃 ) ) )
45 1 2 3 4 5 lhpat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ∈ 𝐴𝑃 ≠ ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ∈ 𝐴 )
46 11 37 14 44 45 syl112anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ∈ 𝐴 )
47 1 4 atcmp ( ( 𝐾 ∈ AtLat ∧ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ∈ 𝐴 ∧ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ∈ 𝐴 ) → ( ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ↔ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) = ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) )
48 36 26 46 47 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ↔ ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) = ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) ) )
49 34 48 mpbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( ( 𝐹𝑇𝐺𝑇 ) ∧ 𝑃𝑄 ∧ ( 𝐺𝑃 ) ≠ 𝑃 ) ∧ ( ( 𝑅𝐺 ) ( 𝑃 𝑄 ) ∧ ( ( 𝐹 ‘ ( 𝐺𝑃 ) ) ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ≠ ( 𝑃 𝑄 ) ∧ ¬ ∃ 𝑟𝐴 ( ¬ 𝑟 𝑊 ∧ ( 𝑃 𝑟 ) = ( 𝑄 𝑟 ) ) ) ) → ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) ( 𝑄 ( 𝐹 ‘ ( 𝐺𝑄 ) ) ) ) = ( ( 𝑃 ( 𝐹 ‘ ( 𝐺𝑃 ) ) ) 𝑊 ) )