Metamath Proof Explorer


Theorem cdlemg1a

Description: Shorter expression for G . TODO: fix comment. TODO: shorten using cdleme or vice-versa? Also, if not shortened with cdleme , then it can be moved up to save repeating hypotheses. (Contributed by NM, 15-Apr-2013)

Ref Expression
Hypotheses cdlemg1.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg1.l = ( le ‘ 𝐾 )
cdlemg1.j = ( join ‘ 𝐾 )
cdlemg1.m = ( meet ‘ 𝐾 )
cdlemg1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg1.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemg1.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemg1.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemg1.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
cdlemg1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
Assertion cdlemg1a ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐺 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )

Proof

Step Hyp Ref Expression
1 cdlemg1.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg1.l = ( le ‘ 𝐾 )
3 cdlemg1.j = ( join ‘ 𝐾 )
4 cdlemg1.m = ( meet ‘ 𝐾 )
5 cdlemg1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg1.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemg1.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemg1.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemg1.e 𝐸 = ( ( 𝑃 𝑄 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
10 cdlemg1.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 𝑄 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
11 cdlemg1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
12 1 2 3 4 5 6 7 8 9 10 11 cdleme50ltrn ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐺𝑇 )
13 simpll1 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simplr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → 𝑓𝑇 )
15 12 ad2antrr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → 𝐺𝑇 )
16 simpll2 ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 simpr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → ( 𝑓𝑃 ) = 𝑄 )
18 1 2 3 4 5 6 7 8 9 10 cdleme17d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝐺𝑃 ) = 𝑄 )
19 18 ad2antrr ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → ( 𝐺𝑃 ) = 𝑄 )
20 17 19 eqtr4d ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → ( 𝑓𝑃 ) = ( 𝐺𝑃 ) )
21 2 5 6 11 cdlemd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑓𝑇𝐺𝑇 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑓𝑃 ) = ( 𝐺𝑃 ) ) → 𝑓 = 𝐺 )
22 13 14 15 16 20 21 syl311anc ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) ∧ ( 𝑓𝑃 ) = 𝑄 ) → 𝑓 = 𝐺 )
23 22 ex ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) → ( ( 𝑓𝑃 ) = 𝑄𝑓 = 𝐺 ) )
24 18 adantr ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) → ( 𝐺𝑃 ) = 𝑄 )
25 fveq1 ( 𝑓 = 𝐺 → ( 𝑓𝑃 ) = ( 𝐺𝑃 ) )
26 25 eqeq1d ( 𝑓 = 𝐺 → ( ( 𝑓𝑃 ) = 𝑄 ↔ ( 𝐺𝑃 ) = 𝑄 ) )
27 24 26 syl5ibrcom ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) → ( 𝑓 = 𝐺 → ( 𝑓𝑃 ) = 𝑄 ) )
28 23 27 impbid ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑓𝑇 ) → ( ( 𝑓𝑃 ) = 𝑄𝑓 = 𝐺 ) )
29 12 28 riota5 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) = 𝐺 )
30 29 eqcomd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) → 𝐺 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 ) )