Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg1.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemg1.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemg1.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemg1.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemg1.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemg1.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemg1.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdlemg1.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
9 |
|
cdlemg1.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdlemg1.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) , 𝑥 ) ) |
11 |
|
cdlemg1.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
12 |
1 2 3 4 5 6 7 8 9 10 11
|
cdleme50ltrn |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐺 ∈ 𝑇 ) |
13 |
|
simpll1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
14 |
|
simplr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → 𝑓 ∈ 𝑇 ) |
15 |
12
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → 𝐺 ∈ 𝑇 ) |
16 |
|
simpll2 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ) |
17 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → ( 𝑓 ‘ 𝑃 ) = 𝑄 ) |
18 |
1 2 3 4 5 6 7 8 9 10
|
cdleme17d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
20 |
17 19
|
eqtr4d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → ( 𝑓 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
21 |
2 5 6 11
|
cdlemd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑓 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑓 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) → 𝑓 = 𝐺 ) |
22 |
13 14 15 16 20 21
|
syl311anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) ∧ ( 𝑓 ‘ 𝑃 ) = 𝑄 ) → 𝑓 = 𝐺 ) |
23 |
22
|
ex |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑃 ) = 𝑄 → 𝑓 = 𝐺 ) ) |
24 |
18
|
adantr |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝐺 ‘ 𝑃 ) = 𝑄 ) |
25 |
|
fveq1 |
⊢ ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
26 |
25
|
eqeq1d |
⊢ ( 𝑓 = 𝐺 → ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ↔ ( 𝐺 ‘ 𝑃 ) = 𝑄 ) ) |
27 |
24 26
|
syl5ibrcom |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( 𝑓 = 𝐺 → ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ) |
28 |
23 27
|
impbid |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝑓 ∈ 𝑇 ) → ( ( 𝑓 ‘ 𝑃 ) = 𝑄 ↔ 𝑓 = 𝐺 ) ) |
29 |
12 28
|
riota5 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) = 𝐺 ) |
30 |
29
|
eqcomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) → 𝐺 = ( ℩ 𝑓 ∈ 𝑇 ( 𝑓 ‘ 𝑃 ) = 𝑄 ) ) |