Metamath Proof Explorer


Theorem cdlemg1idN

Description: Version of cdleme31id with simpler hypotheses. TODO: Fix comment. (Contributed by NM, 18-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg1ltrn.l = ( le ‘ 𝐾 )
cdlemg1ltrn.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg1ltrn.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg1ltrn.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
cdlemg1ltrn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg1id.b 𝐵 = ( Base ‘ 𝐾 )
Assertion cdlemg1idN ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = 𝑋 )

Proof

Step Hyp Ref Expression
1 cdlemg1ltrn.l = ( le ‘ 𝐾 )
2 cdlemg1ltrn.a 𝐴 = ( Atoms ‘ 𝐾 )
3 cdlemg1ltrn.h 𝐻 = ( LHyp ‘ 𝐾 )
4 cdlemg1ltrn.f 𝐹 = ( 𝑓𝑇 ( 𝑓𝑃 ) = 𝑄 )
5 cdlemg1ltrn.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 cdlemg1id.b 𝐵 = ( Base ‘ 𝐾 )
7 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
8 eqid ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 )
9 eqid ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 )
10 eqid ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
11 eqid ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) )
12 eqid ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) ) = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ) → 𝑦 = ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) ( ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ( join ‘ 𝐾 ) ( ( 𝑠 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑄 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( meet ‘ 𝐾 ) ( 𝑄 ( join ‘ 𝐾 ) ( ( 𝑃 ( join ‘ 𝐾 ) 𝑡 ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ( join ‘ 𝐾 ) ( 𝑥 ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) , 𝑥 ) )
13 6 1 7 8 2 3 9 10 11 12 5 4 cdlemg1idlemN ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ 𝑋𝐵 ) ∧ 𝑃 = 𝑄 ) → ( 𝐹𝑋 ) = 𝑋 )