Metamath Proof Explorer


Theorem cdlemg2ce

Description: Utility theorem to eliminate p,q when converting theorems with explicit f. TODO: fix comment. (Contributed by NM, 22-Apr-2013)

Ref Expression
Hypotheses cdlemg2.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg2.l = ( le ‘ 𝐾 )
cdlemg2.j = ( join ‘ 𝐾 )
cdlemg2.m = ( meet ‘ 𝐾 )
cdlemg2.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2ex.u 𝑈 = ( ( 𝑝 𝑞 ) 𝑊 )
cdlemg2ex.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) )
cdlemg2ex.e 𝐸 = ( ( 𝑝 𝑞 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemg2ex.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑝𝑞 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑝 𝑞 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑝 𝑞 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
cdlemg2ce.p ( 𝐹 = 𝐺 → ( 𝜓𝜒 ) )
cdlemg2ce.c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) ∧ 𝜑 ) → 𝜒 )
Assertion cdlemg2ce ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 cdlemg2.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg2.l = ( le ‘ 𝐾 )
3 cdlemg2.j = ( join ‘ 𝐾 )
4 cdlemg2.m = ( meet ‘ 𝐾 )
5 cdlemg2.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemg2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg2ex.u 𝑈 = ( ( 𝑝 𝑞 ) 𝑊 )
9 cdlemg2ex.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) )
10 cdlemg2ex.e 𝐸 = ( ( 𝑝 𝑞 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdlemg2ex.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑝𝑞 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑝 𝑞 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑝 𝑞 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
12 cdlemg2ce.p ( 𝐹 = 𝐺 → ( 𝜓𝜒 ) )
13 cdlemg2ce.c ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) ∧ 𝜑 ) → 𝜒 )
14 simp2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → 𝐹𝑇 )
15 1 2 3 4 5 6 7 8 9 10 11 cdlemg2cex ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → ( 𝐹𝑇 ↔ ∃ 𝑝𝐴𝑞𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) )
16 15 3ad2ant1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → ( 𝐹𝑇 ↔ ∃ 𝑝𝐴𝑞𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) )
17 14 16 mpbid ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → ∃ 𝑝𝐴𝑞𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) )
18 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
19 simp2l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → 𝑝𝐴 )
20 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → ¬ 𝑝 𝑊 )
21 19 20 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) )
22 simp2r ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → 𝑞𝐴 )
23 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → ¬ 𝑞 𝑊 )
24 22 23 jca ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) )
25 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → 𝜑 )
26 18 21 24 25 13 syl31anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → 𝜒 )
27 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → 𝐹 = 𝐺 )
28 27 12 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → ( 𝜓𝜒 ) )
29 26 28 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) ∧ ( 𝑝𝐴𝑞𝐴 ) ∧ ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) ) → 𝜓 )
30 29 3exp ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → ( ( 𝑝𝐴𝑞𝐴 ) → ( ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) → 𝜓 ) ) )
31 30 rexlimdvv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → ( ∃ 𝑝𝐴𝑞𝐴 ( ¬ 𝑝 𝑊 ∧ ¬ 𝑞 𝑊𝐹 = 𝐺 ) → 𝜓 ) )
32 17 31 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝜑 ) → 𝜓 )