Metamath Proof Explorer


Theorem cdlemg2fv

Description: Value of a translation in terms of an associated atom. cdleme48fvg with simpler hypotheses. TODO: Use ltrnj to vastly simplify. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2j.l = ( le ‘ 𝐾 )
cdlemg2j.j = ( join ‘ 𝐾 )
cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2j.m = ( meet ‘ 𝐾 )
cdlemg2j.b 𝐵 = ( Base ‘ 𝐾 )
Assertion cdlemg2fv ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h 𝐻 = ( LHyp ‘ 𝐾 )
2 cdlemg2inv.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
3 cdlemg2j.l = ( le ‘ 𝐾 )
4 cdlemg2j.j = ( join ‘ 𝐾 )
5 cdlemg2j.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2j.m = ( meet ‘ 𝐾 )
7 cdlemg2j.b 𝐵 = ( Base ‘ 𝐾 )
8 eqid ( ( 𝑝 𝑞 ) 𝑊 ) = ( ( 𝑝 𝑞 ) 𝑊 )
9 eqid ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) = ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) )
10 eqid ( ( 𝑝 𝑞 ) ( ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) ( ( 𝑠 𝑡 ) 𝑊 ) ) ) = ( ( 𝑝 𝑞 ) ( ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 eqid ( 𝑥𝐵 ↦ if ( ( 𝑝𝑞 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑝 𝑞 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑝 𝑞 ) ) → 𝑦 = ( ( 𝑝 𝑞 ) ( ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) ( ( 𝑠 𝑡 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) ) = ( 𝑥𝐵 ↦ if ( ( 𝑝𝑞 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑝 𝑞 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑝 𝑞 ) ) → 𝑦 = ( ( 𝑝 𝑞 ) ( ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) ( ( 𝑠 𝑡 ) 𝑊 ) ) ) ) ) , 𝑠 / 𝑡 ( ( 𝑡 ( ( 𝑝 𝑞 ) 𝑊 ) ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) ) ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
12 7 3 4 6 5 1 2 8 9 10 11 cdlemg2fvlem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) )