Metamath Proof Explorer


Theorem cdlemg2fvlem

Description: Lemma for cdlemg2fv . (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2.b 𝐵 = ( Base ‘ 𝐾 )
cdlemg2.l = ( le ‘ 𝐾 )
cdlemg2.j = ( join ‘ 𝐾 )
cdlemg2.m = ( meet ‘ 𝐾 )
cdlemg2.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemg2.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemg2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemg2ex.u 𝑈 = ( ( 𝑝 𝑞 ) 𝑊 )
cdlemg2ex.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) )
cdlemg2ex.e 𝐸 = ( ( 𝑝 𝑞 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
cdlemg2ex.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑝𝑞 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑝 𝑞 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑝 𝑞 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
Assertion cdlemg2fvlem ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg2.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemg2.l = ( le ‘ 𝐾 )
3 cdlemg2.j = ( join ‘ 𝐾 )
4 cdlemg2.m = ( meet ‘ 𝐾 )
5 cdlemg2.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemg2.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemg2.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemg2ex.u 𝑈 = ( ( 𝑝 𝑞 ) 𝑊 )
9 cdlemg2ex.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑞 ( ( 𝑝 𝑡 ) 𝑊 ) ) )
10 cdlemg2ex.e 𝐸 = ( ( 𝑝 𝑞 ) ( 𝐷 ( ( 𝑠 𝑡 ) 𝑊 ) ) )
11 cdlemg2ex.g 𝐺 = ( 𝑥𝐵 ↦ if ( ( 𝑝𝑞 ∧ ¬ 𝑥 𝑊 ) , ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑝 𝑞 ) , ( 𝑦𝐵𝑡𝐴 ( ( ¬ 𝑡 𝑊 ∧ ¬ 𝑡 ( 𝑝 𝑞 ) ) → 𝑦 = 𝐸 ) ) , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) ) , 𝑥 ) )
12 simp1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
13 simp3l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → 𝐹𝑇 )
14 simp2r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) )
15 simp2l ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
16 simp3r ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 )
17 15 16 jca ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) )
18 fveq1 ( 𝐹 = 𝐺 → ( 𝐹𝑋 ) = ( 𝐺𝑋 ) )
19 fveq1 ( 𝐹 = 𝐺 → ( 𝐹𝑃 ) = ( 𝐺𝑃 ) )
20 19 oveq1d ( 𝐹 = 𝐺 → ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) )
21 18 20 eqeq12d ( 𝐹 = 𝐺 → ( ( 𝐹𝑋 ) = ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) ↔ ( 𝐺𝑋 ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) ) )
22 1 2 3 4 5 6 8 9 10 11 cdleme48fvg ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) )
23 22 3expb ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑝𝐴 ∧ ¬ 𝑝 𝑊 ) ∧ ( 𝑞𝐴 ∧ ¬ 𝑞 𝑊 ) ) ∧ ( ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝐺𝑋 ) = ( ( 𝐺𝑃 ) ( 𝑋 𝑊 ) ) )
24 1 2 3 4 5 6 7 8 9 10 11 21 23 cdlemg2ce ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇 ∧ ( ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) )
25 12 13 14 17 24 syl112anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 𝑊 ) ) ∧ ( 𝐹𝑇 ∧ ( 𝑃 ( 𝑋 𝑊 ) ) = 𝑋 ) ) → ( 𝐹𝑋 ) = ( ( 𝐹𝑃 ) ( 𝑋 𝑊 ) ) )