Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemg2.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemg2.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemg2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemg2.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemg2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemg2.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemg2.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
|
cdlemg2ex.u |
⊢ 𝑈 = ( ( 𝑝 ∨ 𝑞 ) ∧ 𝑊 ) |
9 |
|
cdlemg2ex.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑞 ∨ ( ( 𝑝 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
10 |
|
cdlemg2ex.e |
⊢ 𝐸 = ( ( 𝑝 ∨ 𝑞 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
11 |
|
cdlemg2ex.g |
⊢ 𝐺 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑝 ≠ 𝑞 ∧ ¬ 𝑥 ≤ 𝑊 ) , ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ≤ ( 𝑝 ∨ 𝑞 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) , 𝑥 ) ) |
12 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( 𝐺 ‘ ( 𝑃 ∨ 𝑄 ) ) ) |
13 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝑃 ) = ( 𝐺 ‘ 𝑃 ) ) |
14 |
|
fveq1 |
⊢ ( 𝐹 = 𝐺 → ( 𝐹 ‘ 𝑄 ) = ( 𝐺 ‘ 𝑄 ) ) |
15 |
13 14
|
oveq12d |
⊢ ( 𝐹 = 𝐺 → ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ) |
16 |
12 15
|
eqeq12d |
⊢ ( 𝐹 = 𝐺 → ( ( 𝐹 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) ↔ ( 𝐺 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ) ) |
17 |
|
vex |
⊢ 𝑠 ∈ V |
18 |
|
eqid |
⊢ ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑞 ∨ ( ( 𝑝 ∨ 𝑠 ) ∧ 𝑊 ) ) ) = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑞 ∨ ( ( 𝑝 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
19 |
9 18
|
cdleme31sc |
⊢ ( 𝑠 ∈ V → ⦋ 𝑠 / 𝑡 ⦌ 𝐷 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑞 ∨ ( ( 𝑝 ∨ 𝑠 ) ∧ 𝑊 ) ) ) ) |
20 |
17 19
|
ax-mp |
⊢ ⦋ 𝑠 / 𝑡 ⦌ 𝐷 = ( ( 𝑠 ∨ 𝑈 ) ∧ ( 𝑞 ∨ ( ( 𝑝 ∨ 𝑠 ) ∧ 𝑊 ) ) ) |
21 |
|
eqid |
⊢ ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) |
22 |
|
eqid |
⊢ if ( 𝑠 ≤ ( 𝑝 ∨ 𝑞 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) = if ( 𝑠 ≤ ( 𝑝 ∨ 𝑞 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) |
23 |
|
eqid |
⊢ ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ≤ ( 𝑝 ∨ 𝑞 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ≤ ( 𝑝 ∨ 𝑞 ) , ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑝 ∨ 𝑞 ) ) → 𝑦 = 𝐸 ) ) , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
24 |
1 2 3 4 5 6 8 20 9 10 21 22 23 11
|
cdleme42mgN |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊 ) ∧ ( 𝑞 ∈ 𝐴 ∧ ¬ 𝑞 ≤ 𝑊 ) ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐺 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐺 ‘ 𝑃 ) ∨ ( 𝐺 ‘ 𝑄 ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 16 24
|
cdlemg2ce |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝐹 ∈ 𝑇 ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) ) |
26 |
25
|
3com23 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ 𝐹 ∈ 𝑇 ) → ( 𝐹 ‘ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝐹 ‘ 𝑃 ) ∨ ( 𝐹 ‘ 𝑄 ) ) ) |